### Amendment # 1

# To the Nueces River Authority Clean Rivers Program FY 2022/2023 QAPP

Prepared by the Nueces River Authority (NRA) in Cooperation with the Texas Commission on Environmental Quality (TCEQ)

Effective: Immediately upon approval by all parties

Questions concerning this QAPP should be directed to:

Sam Sugarek
Director of Water Quality Programs
602 N. Staples Street, Suite 280
Corpus Christi, Texas 78401
(361) 653-2110
ssugarek@nueces-ra.org

### **Justification**

This document details the changes made to the basin-wide Quality Assurance Project Plan to update Appendix B for Fiscal year 2023. This document also updates personnel changes and addresses any other changes made to the quality program since the last amendment.

### **Summary of Changes**

| Section/Figure/Table | Page | Change                                                                                                                                                          | Justification                                              |
|----------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Section A1           | 2    | Replaced Rebecca DuPont, TCEQ<br>CRP Work Leader, with Kyle Girten<br>as Acting CRP Work Leader                                                                 | Personnel changes at TCEQ                                  |
|                      | 2    | Replaced Rebecca DuPont, Acting CRP Quality Assurance Specialist, with Luis Medina, CRP Project Quality Assurance Specialist                                    | Personnel changes at TCEQ                                  |
|                      | 2    | Replaced Rebecca DuPont, Project<br>Manager Clean Rivers Program,<br>with Kiran Freeman.                                                                        | Personnel changes at TCEQ                                  |
|                      | 2    | Replaced Dana Squires, Lead CRP<br>Quality Assurance Specialist with<br>Jason Natho, Acting Lead CRP<br>Quality Assurance Specialist                            | Personnel changes at TCEQ                                  |
|                      | 4    | Replaced Laura Lira, WUL<br>Laboratory Quality Assurance<br>Officer, with Marisa Juarez                                                                         | Personnel changes at City of Corpus Christi WUL            |
|                      | 5    | Replaced CCSL with PENS lab                                                                                                                                     | Lab changes at Texas A&M<br>University – CCSL, to PENS Lab |
| Section A2           | 9    | Remove CCSL from list of acronyms and add PENS                                                                                                                  | Changing labs that run chlorophyll/pheophytin              |
| Section A3           | 13   | Replaced Rebecca Dupont, Project<br>Manager Clean Rivers Program,<br>with Kiran Freeman. Telephone<br>number, office number, and email<br>address were updated. | Personnel changes at TCEQ                                  |
|                      |      | Replaced Dana Squires, Lead CRP Quality Assurance Specialist with Jason Natho, Acting Lead CRP Quality Assurance Specialist. Contact information was updated.   | Personnel changes at TCEQ                                  |
|                      | 11   | Replaced Laura Lira, WUL QAO, with Marisa Juarez. Name. email address,                                                                                          | Personnel changes at WUL                                   |

|            |    | telephone # were updated                                                                                                                                                                                                             |                                              |
|------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
|            | 11 | Added email addresses for LCRA ELS staff                                                                                                                                                                                             | Email addresses were needed for LCRA ELS     |
|            | 12 | Added Physical and Environmental Sciences (PENS Lab) and staff, Hao Yu – Research Associate, and Richard Coffin – Quality Assurance Officer to the Distribution List. Names, e-mail addresses, titles, and phone numbers were added. | Lab change to PENS from CCSL.                |
| Section A4 | 13 | Replaced Rebecca DuPont, TCEQ<br>CRP Work Lead with Kyle Girten as<br>Acting CRP Work Lead                                                                                                                                           | Personnel changes at TCEQ                    |
|            | 13 | Replaced Dana Squires with Jason<br>Natho as "Acting Lead CRP Quality<br>Assurance Specialist"                                                                                                                                       | Personnel changes at TCEQ                    |
|            | 13 | Replaced Sam Sugarek, CRP Project<br>Manager, with Kiran Freeman                                                                                                                                                                     | Sam Sugarek was inadvertently inserted here. |
|            | 13 | Replaced Sarah Kirkland, CRP Data<br>Manager, DM&A Team with Scott<br>Delgado                                                                                                                                                        | Personnel changes at TCEQ                    |
|            | 14 | Replaced Rebecca Dupont, Acting<br>CRP Project Quality Assurance<br>Specialist, with Luis Medina, CRP<br>Project Quality Assurance Specialist                                                                                        | Personnel changes at TCEQ                    |
|            | 14 | Replaced Sam Sugarek, Nueces<br>River Authority Data Manager, with<br>Jessica Wright                                                                                                                                                 | Personnel changes at NRA                     |
|            | 14 | Replaced Shellie McCumber, Nueces<br>River Authority Aquatic Resource<br>Specialist, with Jessica Wright                                                                                                                             | Personnel changes at NRA                     |
|            | 14 | Italicized "Aquatic Resource<br>Specialist" for Jessica Wright's title                                                                                                                                                               | Title edit for NRA                           |
|            | 15 | Replaced Laura Lira, WUL QAO, with<br>Marisa Juarez                                                                                                                                                                                  | Personnel changes at WUL                     |
|            | 15 | Replaced Laboratory from Center for Coastal Studies (CCSL) with Department of Physical and                                                                                                                                           | Lab changes from CCSL to PENS Lab.           |

|             |    | Environmental Sciences (DENS)                                                                                                                          |                                                                       |
|-------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
|             |    | Environmental Sciences (PENS)                                                                                                                          |                                                                       |
|             | 15 | Substituted Center for Coastal<br>Studies Lab Manager with<br>Department of Physical and<br>Environmental Sciences (PENS)<br>Research Associate Hao Yu | Personnel changes at CCSL<br>which has been replaced with<br>PENS Lab |
|             | 15 | Replaced Brien Nicolau, CCSL<br>Laboratory QAO, with Richard Coffin<br>at PENS Lab                                                                     | Personnel changes at CCSL which has been replaced with PENS Lab       |
| Figure A4.1 | 18 | Replaced Rebecca DuPont, TCEQ<br>CRP Work Leader with Kyle Girten,<br>as "Acting" CRP Work Leader                                                      | Personnel changes at TCEQ                                             |
|             | 18 | Replaced Rebecca DuPont, "Acting<br>TCEQ Project QA Specialist" with<br>Luis Medina as "TCEQ Project QA<br>Specialist                                  | Personnel changes at TCEQ                                             |
|             | 18 | Replaced Dana Squires title from<br>"Lead CRP Quality Assurance<br>Specialist" with Jason Natho as<br>"Acting Lead CRP QA Specialist"                  | Personnel changes at TCEQ                                             |
|             | 18 | Replaced Rebecca DuPont, TCEQ<br>CRP Project Manager, with Kiran<br>Freeman                                                                            | Personnel changes at TCEQ                                             |
|             | 18 | Replaced Sarah Kirkland, TCEQ CRP<br>Data Manager, with Scott Delgado                                                                                  | Personnel changes at TCEQ                                             |
|             | 18 | Replaced Shellie McCumber, Nueces<br>River Authority Aquatic Resource<br>Specialist, with Jessica Wright                                               | Personnel changes at NRA                                              |
|             | 18 | Replaced Shellie McCumber, Nueces<br>River Authority Data Manager, with<br>Jessica Wright                                                              | Personnel changes at NRA                                              |
|             | 18 | PENS Laboratory staff added, and CCSL staff removed                                                                                                    | Lab staff changes                                                     |
|             | 18 | Replaced Laura Lira, WUL QAO, with<br>Marisa Juarez                                                                                                    | Personnel changes at WUL                                              |

| Section A6                      | 21 | Changed the number of bay and tidal sites from 10 to 9. The second sentence was modified to include metals. A sentence was added after the second sentence: "One quarterly bay and tidal station will have semi-annual metals monitoring." The number of river and lake monitoring sites was changed from 33 to 38 and A sentence was added: "Five quarterly river sites will have semi-annual metals monitoring." was added to the sentence. A paragraph outlining the monitoring project for Choke Canyon Reservoir was added. | Describes changes to monitoring design for FY2023 due to supplemental funding |
|---------------------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Table A9.1                      | 24 | Change CCSL to PENS to reflect the changes in the chlorophyll/pheophytin lab                                                                                                                                                                                                                                                                                                                                                                                                                                                     | To reflect changes going from CCSL to PENS Lab                                |
| Section B1                      | 25 | Change CCSL to PENS to reflect the changes in the chlorophyll/pheophytin lab                                                                                                                                                                                                                                                                                                                                                                                                                                                     | To reflect changes going from CCSL to PENS Lab                                |
| Section B2 Table<br>B2.2        | 27 | Change CCSL to PENS to reflect the changes in the chlorophyll/pheophytin lab                                                                                                                                                                                                                                                                                                                                                                                                                                                     | To reflect changes going from CCSL to PENS Lab                                |
| Section B3                      | 29 | Change CCSL to PENS to reflect the changes in the chlorophyll/pheophytin lab                                                                                                                                                                                                                                                                                                                                                                                                                                                     | To reflect changes going from CCSL to PENS Lab                                |
| Section B4                      | 29 | Change CCSL to PENS to reflect the changes in the chlorophyll/pheophytin lab                                                                                                                                                                                                                                                                                                                                                                                                                                                     | To reflect changes going from CCSL to PENS Lab                                |
|                                 | 29 | Replaced EPA Method 447.0 with 445.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | To reflect changes going from CCSL to PENS Lab                                |
| Section B10                     | 35 | Change CCSL to PENS to reflect the changes in the chlorophyll/pheophytin lab                                                                                                                                                                                                                                                                                                                                                                                                                                                     | To reflect changes going from CCSL to PENS Lab                                |
| Table D2.1 Data<br>Review Tasks | 43 | Change CCSL to PENS to reflect the changes in the chlorophyll/pheophytin lab                                                                                                                                                                                                                                                                                                                                                                                                                                                     | To reflect changes going from CCSL to PENS Lab                                |

| Appendix A7.1, A 7.3, and         | 48        | Changing Labs from CCSL to PENS                                                                                                                                                  | Changing Labs from CCSL to PENS                                                                                                       |
|-----------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| A7.8                              |           |                                                                                                                                                                                  | T ENG                                                                                                                                 |
|                                   | 48        | Replaced EPA Method 447.0 with 445.0                                                                                                                                             | To reflect changes going from CCSL to PENS Lab                                                                                        |
|                                   | 51        | Correct water odor parameter code in A 7.3 from 98871 to 89971                                                                                                                   | Incorrect parameter code for water odor existed in QAPP                                                                               |
|                                   | 57        | Updated Metals in Water LOQs in Table A7.8                                                                                                                                       | Incorrect LOQs from a previous version of the QAPP                                                                                    |
|                                   |           | LOQs for Total Chromium, Total<br>Copper, Total Mercury, Total<br>Molybdenum, Total Nickel, and<br>Total Zinc were edited to match<br>LCRA ELS and Energy Lab<br>specifications. | were inadvertently used in<br>the FY 2022/23 document                                                                                 |
|                                   | 55        | Cadmium was moved from the cell<br>below calcium to the cell above<br>calcium                                                                                                    | To keep the list of parameters in alphabetical order                                                                                  |
|                                   | 56        | Change parameter code for hardness from 00900 to 82394                                                                                                                           | To match what LCRA reports                                                                                                            |
|                                   | 56        | Change parameter code for Total<br>Mercury from 71960 to 71900                                                                                                                   | Must have been a transcription error                                                                                                  |
| Task 3: Water Quality Monitoring, | 59        | Monitoring Description was reworded into bullet points.                                                                                                                          | To match formatting with NRA CRP contract.                                                                                            |
| Monitoring Description            | 59        | 'Metals' was added to two semi-<br>annual bay and tidal sites.                                                                                                                   | Noted to include metals sampling that will take place.                                                                                |
|                                   | 59        | The number of river and lake sites was changed from 33 to 38. 5 river sites will also include semi-annual metal monitoring.                                                      | Edited to include the 2 new sites in the Upper Basin, 2 additional sites on Leona and middle Frio, and 1 new station on Choke Canyon. |
|                                   | 59        | A paragraph was added that outlines the Choke Canyon Reservoir monitoring changes.                                                                                               | Describes monitoring changes on Choke Canyon Reservoir                                                                                |
|                                   | 60        | Changes in monitoring descriptions were made to Segments 2104, 2109, 2112, 2116, 2117, 2472, and 2483.                                                                           | Updates to the segments were needed after monitoring changes were made.                                                               |
| Appendix B                        | 63-<br>73 | Updated Table B1.1                                                                                                                                                               | Describes changes to monitoring for FY2023 using                                                                                      |

|            |           |                                                                                                                                                      | additional funds                                                |
|------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
|            | 65        | Add 2x frequency under Metal<br>Water at Station 12972                                                                                               |                                                                 |
|            | 67        | Add quarterly Leona River Station 12985, to the schedule                                                                                             |                                                                 |
|            | 68        | Add quarterly Nueces River Stations 13005, 22330, and 22331 to the schedule                                                                          |                                                                 |
|            | 69        | Change monitoring frequency at<br>Choke Canyon Station 13019 from<br>quarterly to monthly and add 12x<br>24-hour DO monitoring                       |                                                                 |
|            | 69        | Change monitoring frequency at<br>Choke Canyon Station 13020 from<br>quarterly to monthly and add 12x<br>24-hour DO monitoring                       |                                                                 |
|            | 69        | Change monitoring frequency at<br>Choke Canyon Station 17389 from<br>quarterly to monthly, add 2x metals<br>monitoring and 12x 24 H DO<br>monitoring |                                                                 |
|            | 69        | Add new station on Choke Canyon<br>Reservoir 22328 at a monthly<br>frequency and quarterly 24-H DO                                                   |                                                                 |
|            | 69        | Add quarterly Station 13024 on Frio<br>River                                                                                                         |                                                                 |
|            | 69        | Add 2x frequency under Metal<br>Water at Station 13023                                                                                               |                                                                 |
|            | 71        | Add 2x frequency under Metal<br>Water at Port Bay Station 13405                                                                                      |                                                                 |
|            | 71        | Add 2x frequency under Metal<br>Water at Conn Brown Harbor<br>Station 18848                                                                          |                                                                 |
| Appendix C | 75-<br>76 | Updated maps of monitoring stations                                                                                                                  | Monitoring maps were updated to reflect 2023 monitoring changes |

### **Detail of Changes**

### **A1** Approval Page

## Texas Commission on Environmental Quality Water Quality Planning Division

| Electronically Approved                                                     | 10/03/2022 | Electronically Approved                                     | 10/06/2022 |
|-----------------------------------------------------------------------------|------------|-------------------------------------------------------------|------------|
| Kyle Girten, Acting Work Leader<br>Clean Rivers Program                     | Date       | Kiran Freeman, Project Manager<br>Clean Rivers Program      | Date       |
| Electronically Approved                                                     | 10/03/2022 | Electronically Approved                                     | 10/03/2022 |
| Luis Medina<br>Project Quality Assurance Specialist<br>Clean Rivers Program | Date       | Cathy Anderson, Team Leader<br>Data Management and Analysis | Date       |

### **Monitoring Division**

Electronically Approved 10/06/2022

Jason Natho
Acting Lead CRP Quality Assurance Specialist

### **Nueces River Authority (NRA)**

| Electronically Approved            | 10/03/2022 | Electronically Approved                      | 10/03/2022 |
|------------------------------------|------------|----------------------------------------------|------------|
| Sam Sugarek<br>NRA Project Manager | Date       | Sam Sugarek<br>NRA Quality Assurance Officer | Date       |

### Lower Colorado River Authority Environmental Laboratory Services (LCRA ELS)

| Electronically Approved | 10/05/2022 | Electronically Approved           | 10/05/2022 |
|-------------------------|------------|-----------------------------------|------------|
| Dale Jurecka            | Date       | Angel Mata                        | Date       |
| LCRA ELS Lab Manager    |            | LCRA ELS Lab Quality Assurance Of | ficer      |

### **City of Corpus Christi Water Utilities Laboratory (WUL)**

| Electronically Approved | 10/04/2022 | Electronically Approved        | 10/04/2022  |
|-------------------------|------------|--------------------------------|-------------|
| Marisa Juarez           | Date       | <mark>Marisa Juarez</mark>     | Date        |
| WUL Laboratory Manager  |            | WUL Laboratory Quality Assurar | nce Officer |

### Texas A&M University – Corpus Christi Department of Physical and Environmental Sciences (PENS)

| Electronically Approved | 10/03/2022 | Electronically Approved 10/04/20          |      |
|-------------------------|------------|-------------------------------------------|------|
| <mark>Hao Yu</mark>     | Date       | Richard Coffin                            | Date |
| PENS Research Associate |            | PENS Laboratory Quality Assurance Officer |      |

### San Antonio River Authority Regional Environmental Laboratory (SARA REL)

Electronically Approved 10/03/2022 Electronically Approved 10/04/2022

Zachary Jendrusch Date SARA REL Lab Supervisor Patty Carvajal Date SARA REL Lab Quality Assurance Officer

### Bandera County River Authority and Groundwater District (BCRAGD)

Electronically Approved 10/06/2022 Electronically Approved 10/04/2022

David Mauk Date Clint Carter Date

BCRAGD General Manager BCRAGD Quality Assurance Officer

### **List of Acronyms**

AWRL Ambient Water Reporting Limit

BCRAGD Bandera County River Authority and Groundwater District

BMP Best Management Practices
CAP Corrective Action Plan

CE Collecting Entity
COC Chain of Custody
CRP Clean Rivers Program

DMRG Surface Water Quality Monitoring Data Management Reference Guide, July 2019, or

most recent version

DM&A Data Management and Analysis

EPA United States Environmental Protection Agency

FY Fiscal Year

GIS Geographical Information System

GPS Global Positioning System

LCRA ELS Lower Colorado River Authority – Environmental Laboratory Services

LCS Laboratory Control Sample

LCSD Laboratory Control Sample Duplicate

LIMS Laboratory Information Management System

LOD Limit of Detection
LOQ Limit of Quantitation
MT Monitoring Type

NELAP National Environmental Laboratory Accreditation Program

PENS Department of Physical and Environmental Sciences Laboratory at Texas A&M-Corpus

Christi

QA Quality Assurance QM Quality Manual

QAO Quality Assurance Officer
QAPP Quality Assurance Project Plan
QAS Quality Assurance Specialist

QC Quality Control

QMP Quality Management Plan

RM Routine Monitoring

SARA REL San Antonio River Authority Regional Environmental Laboratory

SE Submitting Entity SLOC Station Location

SOP Standard Operating Procedure SWQM Surface Water Quality Monitoring

SWQMIS Surface Water Quality Monitoring Information System

TAMU-CC Texas A&M University – Corpus Christi

TMDL Total Maximum Daily Load

TCEQ Texas Commission on Environmental Quality

TNI The NELAC Institute

TSWQS Texas Surface Water Quality Standards

### A3 Distribution List

#### **Texas Commission on Environmental Quality**

P.O. Box 13087 Austin, Texas 78711-3087

Kiran Freeman, Project Manager

Clean Rivers Program

MC-234

(512) 239-1810

Kiran.Freeman@tceq.texas.gov

Jason Natho

Acting Lead CRP Quality Assurance Specialist

MC-165

(512) 239-1672

jason.natho@tceq.texas.gov

**Cathy Anderson** 

Team Leader, Data Management and Analysis

MC-234

(512) 239-1805

Cathy.Anderson@tceq.texas.gov

### **Nueces River Authority**

602 N. Staples St, Suite 280 Corpus Christi, Texas 78401

Sam Sugarek, Project Manager

(361) 653-2110 / ssugarek@nueces-ra.org

Sam Sugarek, Quality Assurance Officer (361) 653-2110 / ssugarek@nueces-ra.org

### City of Corpus Christi-Water Utilities Laboratory (WUL)

13101 Leopard St.

Corpus Christi, Texas 78410

Marisa Juarez, Lab Manager

(361) 826-1201 / MarisaJ@cctexas.com

Marisa Juarez, Lab QAO

(361) 826-1201 / MarisaJ@cctexas.com

#### Department of Physical and Environmental Sciences (PENS) Lab - Texas A&M Corpus Christi

6300 Ocean Drive, NRC Suite 3506

Corpus Christi, Texas 78412

Hao Yu, Research Associate

(361) 825-2762 / <u>Hao.Yu@tamucc.edu</u>

Richard Coffin, QAO

(361) 825-2456 / Richard.Coffin@tamucc.edu

### San Antonio River Authority Regional Environmental Laboratory (SARA REL)

P.O. Box 220

San Antonio, Texas 78212-4405

Zachary Jendrusch, Lab Supervisor

(210) 302-3275 / zjendrusch@sara-tx.org

Patty Carvajal, Lab Quality Assurance Officer (210) 302-3672 / pmcarvajal@sara-tx.org

### Lower Colorado River Authority Environmental Laboratory Services (LCRA ELS)

P.O. Box 220 Austin, Texas 78767

Dale Jurecka, Lab Manager

(512) 730-6337 / <u>Dale.Jurecka@lcra.org</u>

Angel Mata, QAO

(512) 356-6022 / Angel.Mata@lcra.org

### Bandera County River Authority and Groundwater District (BCRAGD)

P.O. Box 177 Bandera, Texas 78003-0177

David Mauk, General Manager (830) 796-7260 / dmauk@bcragd.org

Clint Carter, Quality Assurance Officer (830) 796-7260 / ccarter@bcragd.org

The NRA will provide copies of this project plan and any amendments or appendices of this plan to each person on this list and to each sub-tier project participant, e.g., subcontractors, sub-participants, or other units of government. The NRA will document distribution of the plan and any amendments and appendices, maintain this documentation as part of the project's quality assurance records, and ensure the documentation is available for review.

### **A4 PROJECT/TASK ORGANIZATION**

### **Description of Responsibilities**

### **TCEQ**

### <mark>Kyle Girten</mark> <mark>Acting</mark> CRP Work Leader

Responsible for Texas Commission on Environmental Quality (TCEQ) activities supporting the development and implementation of the Texas Clean Rivers Program (CRP). Responsible for verifying that the TCEQ Quality Management Plan (QMP) is followed by CRP staff. Supervises TCEQ CRP staff. Reviews and responds to any deficiencies, corrective actions, or findings related to the area of responsibility. Oversees the development of Quality Assurance (QA) guidance for the CRP. Reviews and approves all QA audits, corrective actions, , reports, work plans, contracts, QAPPs, and TCEQ Quality Management Plan. Enforces corrective action, as required, where QA protocols are not met. Ensures CRP personnel are fully trained.

### Jason Natho

### Acting Lead CRP Quality Assurance Specialist

Participates in the development, approval, implementation, and maintenance of written QA standards (e.g., Program Guidance, SOPs, QAPPs, QMP). Assists program and project manager in developing and implementing quality system. Serves on planning team for CRP special projects. Coordinates the review and approval of CRP QAPPs. Prepares and distributes annual audit plans. Conducts monitoring systems audits of Planning Agencies. Concurs with and monitors implementation of corrective actions. Conveys QA problems to appropriate management. Recommends that work be stopped in order to safeguard programmatic objectives, worker safety, public health, or environmental protection. Ensures maintenance of QAPPs and audit records for the CRP.

### <mark>Kiran Freeman</mark>

### CRP Project Manager

Responsible for the development, implementation, and maintenance of CRP contracts. Tracks, reviews, and approves deliverables. Participates in the development, approval, implementation, and maintenance of written QA standards (e.g., Program Guidance, SOPs, QAPPs, QMP). Assists CRP Lead QA Specialist in conducting Nueces River Authority audits. Verifies QAPPs are being followed by contractors and that projects are producing data of known quality. Coordinates project planning with the Nueces River Authority Project Manager. Reviews and approves data and reports produced by contractors. Notifies QA Specialists of circumstances which may adversely affect the quality of data derived from the collection and analysis of samples. Develops, enforces, and monitors corrective action measures to ensure contractors meet deadlines and scheduled commitments.

### Cathy Anderson

### Team Leader, Data Management and Analysis (DM&A) Team

Participates in the development, approval, implementation, and maintenance of written QA standards (e.g., Program Guidance, SOPs, QAPPs, QMP). Ensures DM&A staff perform data management-related tasks.

### Scott Delgado

### CRP Data Manager, DM&A Team

Responsible for coordination and tracking of CRP data sets from initial submittal through CRP Project Manager review and approval. Ensures that data are reported following instructions in the Data Management Reference Guide, most current version. Runs automated data validation checks in the Surface Water Quality Management Information System (SWQMIS) and coordinates data verification and error correction with CRP Project Managers. Generates SWQMIS summary reports to assist CRP Project Managers' data review. Identifies data anomalies and inconsistencies. Provides training and guidance to CRP and Planning Agencies on technical data issues to ensure that data are submitted according to documented procedures. Reviews QAPPs for valid stream monitoring stations. Checks validity of parameter codes, submitting entity code(s), collecting entity code(s), and monitoring type code(s). Develops and maintains data management-related SOPs for CRP data management. Coordinates and processes data correction requests. Participates in the development, implementation, and maintenance of written QA standards (e.g., Program Guidance, SOPs, QAPPs, OMP).

#### Luis Medina

### CRP Project Quality Assurance Specialist

Serves as liaison between CRP management and TCEQ QA management. Participates in the development, approval, implementation, and maintenance of written QA standards (e.g., Program Guidance, SOPs, QAPPs, QMP). Serves on planning team for CRP special projects and reviews QAPPs in coordination with other CRP staff. Coordinates documentation and implementation of corrective action for the CRP.

### **NUECES RIVER AUTHORITY**

### Sam Sugarek

### Nueces River Authority Project Manager

Responsible for writing and maintaining the QAPP and monitoring its implementation. Responsible for implementing and monitoring CRP requirements in contracts, QAPPs, and QAPP amendments and appendices. Coordinates basin planning activities and work of basin partners. Ensures monitoring systems audits are conducted to ensure QAPPs are followed by Nueces River Authority participants and that projects are producing data of known quality. Ensures that sub-participants are qualified to perform contracted work. Ensures CRP project managers and/or QA Specialists are notified of deficiencies and corrective actions, and that issues are resolved. Responsible for validating that data collected are acceptable for reporting to the TCEQ. Conducts monitoring systems audits on project participants to determine compliance with project and program specifications, issues written reports, and follows through on findings. Ensures that field staff is properly trained and that training records are maintained.

### Sam Sugarek

### Nueces River Authority Quality Assurance Officer

Responsible for coordinating the implementation of the QA program. Responsible for maintaining records of QAPP distribution, including appendices and amendments. Responsible for maintaining written records of sub-tier commitment to requirements specified in this QAPP. Responsible for identifying, receiving, and maintaining project QA records. Responsible for coordinating with the TCEQ QAS to resolve QA-related issues. Notifies the Nueces River Authority Project Manager of particular circumstances which may adversely affect the quality of data. Coordinates and monitors deficiencies and corrective action. Coordinates and maintains records of data verification and validation. Coordinates the research and review of technical QA material and data related to water quality monitoring system design and analytical techniques. Assists the NRA Project Manager in conducting monitoring systems audits on project participants to determine compliance with project and program specifications, issues written reports, and follows through on findings. Ensures that field staff is properly trained and that training records are maintained.

### <mark>Jessica Wright</mark>

### Nueces River Authority Data Manager

Responsible for ensuring that field data are properly reviewed and verified. Responsible for the transfer of basin quality-assured water quality data to the TCEQ in a format compatible with SWQMIS. Maintains quality-assured data on Nueces River Authority internet sites.

### Sam Sugarek

### Nueces River Authority Field Supervisor

Coordinates field sampling and data collection activities and supervises the field personnel in conducting sampling events. Ensures that all field personnel are properly trained and equipped to conduct the necessary monitoring and that all sampling procedures are followed according to the QAPP. Ensures that personnel, supplies, and equipment are available at all appropriate times. Responsible for overseeing the Aquatic Resource Specialist in completing sample documentation including labeling samples and ensuring the correct sites are identified. Supervises field and laboratory data entry to the NRA database. Reviews data entered into NRA database and informs NRA Project Manager of any needed corrections.

### <mark>Jessica Wright</mark>

### Nueces River Authority Aquatic Resource Specialist

Conducts field sampling and data collection activities following procedures outlined in the QAPP. Responsible for completing sample documentation including labeling samples and ensuring the correct sites are identified. Responsible for ensuring all instrument calibration data is complete. Enters data into NRA database and informs NRA Project Manager of any needed corrections.

### City of Corpus Christi-Water Utilities Laboratory (WUL)

### Marisa Juarez

### WUL, Laboratory Manager

Responsible for the overall performance, administration, and reporting of analyses performed by the WUL. Responsible for supervision of laboratory personnel involved in generating analytical data for the project. Ensures that laboratory personnel have adequate training and a thorough knowledge of the QAPP and related SOPs. Responsible for oversight of all laboratory operations ensuring that all QA/QC requirements are met, documentation is complete and adequately maintained, and results are reported accurately. Enforces corrective action, as required.

### **Marisa Juarez**

### WUL, Laboratory QAO

Responsible for the overall quality control and quality assurance of analyses performed by the WUL. Monitors the implementation of the QM/QAPP within the laboratory to ensure complete compliance with QA data quality objectives, as defined by the contract and in the QAPP. Conducts in-house audits to ensure compliance with written SOPs and to identify potential problems. Responsible for supervising and verifying all aspects of the QA/QC in the laboratory.

### Department of Physical and Environmental Sciences Laboratory at Texas A&M University – Corpus Christi (PENS)

### Hao Yu

### PENS, Research Associate

Responsible for the overall performance, administration, and reporting of analyses performed by PENS. Responsible for supervision of laboratory and field personnel involved in generating analytical data for the project. Ensures that laboratory and field personnel have adequate training and a thorough knowledge of the QAPP and related SOPs. Responsible for oversight of all laboratory operations ensuring that all QA/QC requirements are met, documentation is complete and adequately maintained, and results are reported accurately. Enforces corrective action, as required.

### <mark>Richard Coffin</mark>

### PENS, Laboratory QAO

Responsible for the overall quality control and quality assurance of analyses performed by PENS. Monitors the implementation of the QM/QAPP within the laboratory to ensure complete compliance with QA data quality objectives, as defined by the contract and in the QAPP. Conducts in-house audits to ensure compliance with written SOPs and to identify potential problems. Responsible for supervising and verifying all aspects of the QA/QC in the laboratory.

### San Antonio River Authority Regional Environmental Laboratory (SARA REL)

### Zachary Jendrusch

### SARA REL, Laboratory Supervisor

Responsible for overall performance, administration, and reporting of analyses performed by SARA's Regional Environmental Laboratory Services. Responsible for supervision of laboratory personnel involved in generating analytical data for the project. Ensures that laboratory personnel have adequate training and a thorough knowledge of the QAPP and related SOPs. Responsible for oversight of all laboratory operations ensuring that all QA/QC requirements are met, documentation is complete and adequately maintained, and results are reported accurately. Additionally, the lab director will review and verify all field and laboratory data for integrity and continuity, reasonableness and conformance to project requirements, and then validated against the data quality objectives listed in Appendix A.

### Patty Carvajal

### SARA REL, Laboratory QAO

Maintains operating procedures that are in compliance with the QAPP, amendments and appendices. Responsible for the overall quality control and quality assurance of analyses performed by SARA's Regional Environmental Laboratory.

Assists with monitoring systems audits for CRP projects. Conducts in-house audits to ensure compliance with written SOPs and to identify potential problems. Responsible for supervising and verifying all aspects of the QA/QC in the laboratory.

### Lower Colorado River Authority Environmental Laboratory Services (LCRA ELS)

### Dale Jurecka

### LCRA ELS, Laboratory Manager

Responsible for the overall performance, administration, and reporting of analyses performed by LCRA's ELS. Responsible for supervision of laboratory and field personnel involved in generating analytical data for the project. Ensures that laboratory and field personnel have adequate training and a thorough knowledge of the QAPP and related SOPs. Responsible for oversight of all laboratory operations ensuring that all QA/QC requirements are met, documentation is complete and adequately maintained, and results are reported accurately. Enforces corrective action, as required.

### Angel Mata

### LCRA ELS, Laboratory QAO

Responsible for the overall quality control and quality assurance of analyses performed by LCRA's ELS. Monitors the implementation of the QM/QAPP within the laboratory to ensure complete compliance with QA data quality objectives, as defined by the contract and in the QAPP. Conducts in-house audits to ensure compliance with written SOPs and to identify potential problems. Responsible for supervising and verifying all aspects of the QA/QC in the laboratory.

### Bandera County River Authority and Groundwater District (BCRAGD)

### David Mauk

### General Manager

Responsible for overall performance, administration, and reporting of analyses performed by BCRAGD field staff. Responsible for supervision of field personnel involved in generating analytical data for the project. Ensures that field personnel have adequate training and a thorough knowledge of the QAPP and related SOPs. Responsible for oversight of all field operations ensuring that all QA/QC requirements are met, documentation is complete and adequately maintained, and results are reported accurately. Additionally, the general manager will review and verify all field work and laboratory calibrations for integrity and continuity, reasonableness and conformance to project requirements.

### Clint Carter

### BCRAGD Operations Manager/QAO

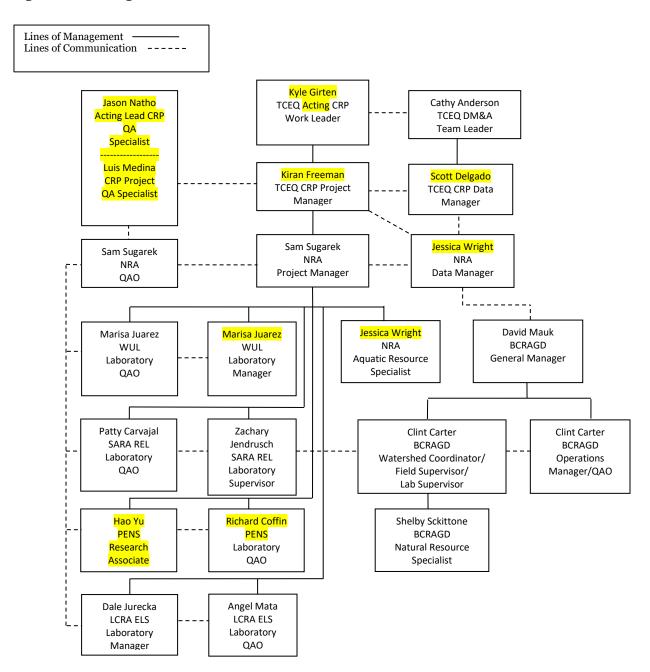
Maintains operating procedures that are in compliance with the QAPP, amendments and appendices. Responsible for the overall quality control and quality assurance of analyses performed by BCRAGD's field staff. Assists with monitoring systems audits for CRP projects. Additionally, the QAO will review and verify all field and laboratory data for integrity and continuity, reasonableness and conformance to project requirements, and then validated against the data quality objectives.

Responsible for coordinating the implementation of the QA program. Responsible for identifying, receiving, and maintaining project quality assurance records. Notifies the NRA QAO of particular circumstances which may adversely affect the quality of data. Coordinates and monitors deficiencies, nonconformance and corrective action. Coordinates and maintains records of data verification and validation. Coordinates their search and review of technical QA material and data related to water quality monitoring system design and analytical techniques.

#### Clint Carter

### BCRAGD Watershed Protection Coordinator / Field Supervisor / Lab Supervisor

Coordinates field sampling and data collection activities and supervises the field personnel in conducting sampling events. Ensures that all field personnel are properly trained and equipped to conduct the necessary monitoring and that all sampling procedures are followed according to the QAPP. Ensures that personnel, supplies, and equipment are available at all appropriate times. Responsible for overseeing the Natural Resource Specialist in completing sample documentation


including labeling samples and ensuring the correct sites are identified. Ensures that samples are sent properly to lab for analysis. Responsible for recording all reagents into the reagent log and labeling all reagent bottles in accordance with the Nueces River Authority QAPP and the BCRAGD SOP for CRP. Conducts all pre- and post-calibrations and maintains all sampling equipment.

### Shelby Sckittone BCRAGD Natural Resource Specialist

Conducts field sampling and data collection activities following procedures outlined in the QAPP. Responsible for completing sample documentation including labeling samples and ensuring the correct sites are identified. Ensures that samples are sent properly to lab for analysis.

### **Project Organization Chart**

Figure A4.1. Organization Chart - Lines of Communication



### A6 Project/Task Description

NRA will monitor a minimum of 9 bay and tidal sites quarterly for conventional, bacteria, and field parameters. NRA will also monitor 2 bay and tidal locations on a semi-annual basis for conventional, bacteria, metals and field parameters. One quarterly bay and tidal station will have semi-annual metals monitoring. NRA will monitor a minimum of 38 river and lake sites quarterly for conventional, bacteria, flow (where applicable), and field parameters. Five quarterly river sites will have semi-annual metals monitoring. NRA will also monitor 2 river locations on a quarterly basis for Chlorophyll-a, TDS, bacteria, and field parameters. NRA will also monitor one river site for bacteria and field parameters only and one river site for field parameters only. NRA will also conduct 24-hour dissolved oxygen monitoring at 3 sites given sufficient water. NRA will monitor for metals in water at 3 locations on a twice per year frequency.

The Performing Party will conduct additional monitoring in Choke Canyon Reservoir (Segment 2116). This includes additional monitoring events at three existing monitoring sites such that monthly monitoring is conducted for nutrients, field parameters, and 24-hour field parameters. In addition to the existing monitoring sites, the Performing Party will conduct monthly monitoring for nutrient and field parameters, and 24-hour field parameter monitoring at least once per quarter, at one new site.

Bandera County River Authority and Groundwater District (BCRAGD) will conduct routine quarterly monitoring, collecting field, conventional, bacteria and, where applicable, flow data at 4 river monitoring stations in Basin 20.

See Appendix B for the project-related work plan tasks and schedule of deliverables for a description of work defined in this QAPP.

See Appendix B for sampling design and monitoring pertaining to this QAPP.

### Amendments to the QAPP

Revisions to the QAPP may be necessary to address incorrectly documented information or to reflect changes in project organization, tasks, schedules, objectives, and methods. Requests for amendments will be directed from the Nueces River Authority Project Manager to the CRP Project Manager electronically. The Nueces River Authority will submit a completed QAPP Amendment document, including a justification of the amendment, a table of changes, and all pages, sections, and attachments affected by the amendment. Amendments are effective immediately upon approval by the Nueces River Authority Project Manager, the Nueces River Authority QAO, the CRP Project Manager, the CRP Lead QA Specialist, the TCEQ QA Manager or designee, the CRP Project QA Specialist, and additional parties affected by the amendment. Amendments are not retroactive. No work shall be implemented without an approved QAPP or amendment prior to the start of work. Any activities under this contract that commence prior to the approval of the governing QA document constitute a deficiency and are subject to corrective action as described in section C1 of this QAPP. Any deviation or deficiency from this QAPP which occurs after the execution of this QAPP will be addressed through a Corrective Action Plan (CAP). An Amendment may be a component of a CAP to prevent future recurrence of a deviation.

Amendments will be incorporated into the QAPP by way of attachment and distributed to personnel on the distribution list by the Nueces River Authority Project Manager. If adherence letters are required, the Nueces River Authority will secure an adherence letter from each sub-tier project participant (e.g., subcontractors, sub-participant, or other units of government) affected by the amendment stating the organization's awareness of and commitment to requirements contained in each amendment to the QAPP. The Nueces River Authority will maintain this documentation as part of the project's QA records, and ensure that the documentation is available for review.

### **Special Project Appendices**

Projects requiring QAPP appendices will be planned in consultation with the Nueces River Authority and the TCEQ Project Manager and TCEQ technical staff. Appendices will be written in an abbreviated format and will reference the Nueces River Authority QAPP where appropriate. Appendices will be approved by the Nueces River Authority Project Manager, the Nueces River Authority QAO, the Laboratory (as applicable), and the CRP Project Manager, the CRP Project QA Specialist, the CRP Lead QA Specialist and additional parties affected by the Appendix, as appropriate. Copies of approved QAPP appendices will be distributed by the Nueces River Authority to project participants before data collection activities commence. The Nueces River Authority will secure written documentation from each sub-tier project participant (e.g., subcontractors, sub-participants, other units of government) stating the organization's awareness of and commitment to requirements contained in each special project appendix to the QAPP. The Nueces River Authority will maintain this documentation as part of the project's QA records, and ensure that the documentation is available for review.

• Table A9.1 Project Documents and Records

| Document/Record                         | Location                      | Retention (yrs) | Format            |
|-----------------------------------------|-------------------------------|-----------------|-------------------|
| QAPPs, amendments and appendices        | NRA, BCRAGD                   | 7*              | Paper, electronic |
| Field SOPs                              | NRA, BCRAGD                   | 7*              | Paper, electronic |
| Laboratory Quality Manuals              | WUL, SARA REL,                | 5               | Paper, electronic |
|                                         | PENS, LCRA ELS                |                 |                   |
| Laboratory SOPs                         | WUL, SARA REL,                | 5               | Paper, electronic |
|                                         | PENS, LCRA ELS                |                 |                   |
| QAPP distribution documentation         | NRA, BCRAGD                   | 7*              | Paper, electronic |
| Field staff training records            | NRA, BCRAGD                   | 7*              | Paper, electronic |
| Field equipment calibration/maintenance | NRA, BCRAGD                   | 7*              | Paper             |
| logs                                    |                               |                 |                   |
| Field instrument printouts              | NRA, BCRAGD                   | 7*              | Electronic        |
| Field notebooks or data sheets          | NRA, BCRAGD                   | 7*              | Paper             |
| Laboratory Data Results                 | NRA, BCRAGD                   | 7*              | Paper             |
| Chain of custody records                | NRA, BCRAGD,                  | 7*              | Paper             |
|                                         | WUL, <mark>PENS</mark> , SARA |                 |                   |
|                                         | REL, LCRA ELS                 |                 |                   |
| Laboratory calibration records          | WUL, SARA REL,                | 5               | Paper, electronic |
|                                         | PENS, LCRA ELS                |                 |                   |
| Laboratory instrument printouts         | WUL, SARA REL,                | 5               | Paper, electronic |
|                                         | PENS, LCRA ELS                |                 |                   |
| Laboratory data reports/results         | WUL/SARA REL,                 | 5               | Paper, electronic |
|                                         | PENS, LCRA ELS                |                 |                   |
|                                         | NRA, BCRAGD                   | 7*              | Paper, electronic |
| Laboratory equipment maintenance logs   | WUL, SARA REL,                | 5               | Paper, electronic |
|                                         | PENS, LCRA ELS                |                 |                   |
| Corrective Action Documentation         | WUL, SARA REL,                | 5               | Paper, electronic |
|                                         | PENS, LCRA ELS                |                 |                   |
|                                         | NRA, BCRAGD                   | 7*              | Paper, electronic |

<sup>\*</sup>NRA stores all documentation including electronic and paper documents at least 7 years.

### **B1** Sampling Process Design

Sampling under this QAPP is conducted by NRA and BCRAGD. NRA uses the CC-WUL for conventional parameters including bacteria and  $\frac{PENS}{PENS}$  for chlorophyll-a and pheophytin analysis. NRA has the option to use the CC-WUL to run chlorophyll-a and pheophytin analysis as needed. BCRAGD uses the SARA-REL for all routine chemical analysis including bacteria.

See Appendix B for sampling process design information and monitoring tables associated with data collected under this QAPP.

**Table B2.2 Sampling Containers** 

|             | Sampling Containers                             |       |  |  |  |  |  |  |  |  |  |
|-------------|-------------------------------------------------|-------|--|--|--|--|--|--|--|--|--|
|             | NRA Sampling Containers                         |       |  |  |  |  |  |  |  |  |  |
| Container # | Bottle Description                              | Lab   |  |  |  |  |  |  |  |  |  |
| 1           | 1000mL Polyethylene bottle                      | WUL   |  |  |  |  |  |  |  |  |  |
| 2           | 500mL Polyethylene bottle, preserved in the lab | WUL   |  |  |  |  |  |  |  |  |  |
| 3           | 500mL Brown polyethylene bottle                 | PENS* |  |  |  |  |  |  |  |  |  |
| 4           | 500mL Glass bottle, preserved in the lab        | WUL   |  |  |  |  |  |  |  |  |  |
| 5           | 290mL IDEXX bottle                              | WUL   |  |  |  |  |  |  |  |  |  |

| 6  | 250mL Polyethylene bottle                 | LCRA ELS |  |  |  |  |  |  |
|----|-------------------------------------------|----------|--|--|--|--|--|--|
| 7  | 250mL Glass or Teflon bottle              | LCRA ELS |  |  |  |  |  |  |
|    | BCRAGD Sampling Containers                |          |  |  |  |  |  |  |
| 8  | 4000mL Cubitainer                         | SARA REL |  |  |  |  |  |  |
| 9  | 1000mL Cubitainer, preserved in the field | SARA REL |  |  |  |  |  |  |
| 10 | 2000mL Brown polyethylene bottle          | SARA REL |  |  |  |  |  |  |
| 11 | 300mL Whirlpack                           | SARA REL |  |  |  |  |  |  |

<sup>\*</sup>NRA purchases new containers (container 3) to be used for parameter analysis by PENS.

### **B3** Sample Handling and Custody

### **Sample Tracking**

Proper sample handling and custody procedures ensure the custody and integrity of samples beginning at the time of sampling and continuing through transport, sample receipt, preparation, and analysis.

A sample is in custody if it is in actual physical possession or in a secured area that is restricted to authorized personnel. The Chain of Custody (COC) form is a record that documents the possession of the samples from the time of collection to receipt in the laboratory. The following information concerning the sample is recorded on the COC form (See Appendix E). The following list of items matches the COC form in Appendix E. *All COC forms to be used in the project should be included in Appendix E for the TCEQ's review*.

Date and time of collection
Site identification
Sample matrix
Number of containers
Preservative used
Was the sample filtered
Analyses required
Name of collector
Custody transfer signatures and dates and time of transfer
Bill of lading, if applicable

### **Sample Labeling**

Samples from the field are labeled on the container, or on a label, with an indelible marker. Label information includes:

Site identification
Date and time of collection
Preservative added, if applicable
Indication of field-filtration for metals, as applicable
Sample type (i.e., analyses) to be performed

### Sample Handling

At each site visited, sample containers are placed in a re-sealable plastic bag and are immediately placed on ice in an ice chest. Chain of custody (COC) forms are filled out noting the station ID, date, and time and corresponding analysis to be completed by laboratory personnel. Samples to WUL and PENS are delivered immediately to the respective lab after sampling. Upon delivery, lab personnel receive the samples and note the temperature of the samples, time, date, and provide a signature on the COC form. Copies of the signed COC forms are made and stored with field data sheets and lab data results at Nueces River Authority.

For metals in water sampling, NRA will collect a dissolved metals in water and a total-metals in water sample at each metals monitoring station. Dissolved metals in water samples are field filtered and placed in a re-sealable plastic bag along with the unfiltered total metals in water sample. Samples are then placed in an ice chest (no ice is required) with the COC

sealed in a waterproof storage bag inside the cooler. The cooler is then sealed with duct tape and a signed and dated chain of custody seal for shipment to LCRA ELS. Samples are then shipped to LCRA ELS for analysis. Upon delivery, lab personnel receive the samples and note the temperature of the samples, time, date, and provide a signature on the COC form.

Samples obtained by BCRAGD are immediately placed on ice in an ice chest for transport back to BCRAGD offices. Chain of custody (COC) forms provided by the SARA Lab are filled out noting the station ID, date, and time and corresponding analysis to be completed by laboratory personnel. The ice chest with the COC forms is then sealed for transport to SARA by courier. Upon delivery, lab personnel receive the samples and note the temperature of the samples, time, date, and provide a signature on the COC form

### **B4** Analytical Methods

The analytical methods, associated matrices, and performing laboratories are listed in Appendix A. The authority for analysis methodologies under CRP is derived from the 30 Tex. Admin. Code Ch. 307, in that data generally are generated for comparison to those standards and/or criteria. The Texas Surface Water Quality Standards state "Procedures for laboratory analysis must be in accordance with the most recently published edition of the book entitled Standard Methods for the Examination of Water and Wastewater, the TCEQ Surface Water Quality Monitoring Procedures as amended, 40 CFR 136, or other reliable procedures acceptable to the TCEQ, and in accordance with chapter 25 of this title."

Laboratories collecting data under this QAPP must be NELAP accredited in accordance with 30 TAC Chapter 25. Copies of laboratory QMs and SOPs shall be made available for review by the TCEQ. Exceptions to this rule include laboratories that only analyze parameters that do not require laboratory accreditation (e.g. Chlorophyll-*a* and pheophytin samples run by PENS using EPA 445.0 which doesn't require TCEQ accreditation).

### **B10 Data Management**

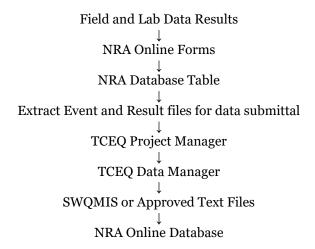
### **Data Management Process**

NRA's field data sheets are used to record field and acquired data (streamflow and precipitation information) from each monitoring station for each sampling event. Laboratory data results from WUL, LCRA ELS, and PENS are received electronically by NRA via email following each sampling event.

BCRAGD submits field data and lab results to NRA electronically via email.

NRA staff transcribes data and uploads photographs from each sampling event (NRA and BCRAGD) to NRA's online data entry forms called DataIn Scripts. Data is input into the database based on the source or type of data. There is an online form for 24-hour dissolved oxygen data, routine CRP data analyzed by CC WUL, LCRA ELS, and CCSL, routine CRP data analyzed by SARA, and one for profile measurements. Each input form includes the field parameters. There is an additional input form for adding pictures. The data is stored in NRA's temporary database. The data are extracted from this database and formatted for submittal to TCEQ.

The forms are designed to limit the amount of information that has to be typed in order to reduce typographical errors. The forms contain: a drop-down list of stations associated with each input type; input fields associated with the event record include the tag number, date, time, depth, source codes, program code, comment, and quarter. The quarter field is only used in NRA's temporary database. The forms also include the results records information via input fields for all field parameters and lab parameters. Where applicable, outliers are flagged via an associated input field. The information entered into the database is printed and double-checked against the field data sheets and lab results pages by the NRA Field Supervisor. Data entry errors are noted and corrected.


The data will be supplied to the TCEQ Project Manager as ASCII pipe-delimited text files in the Event/Result file formats as described in the most current version of the DMRG. The data files are then forwarded to the TCEQ Data Manager.

After approval by TCEQ and inclusion in SWQMIS, the data are entered into NRA's CRP database table that is available online. There are two loading procedures:

- Procedure 1: Once a month, non-NRA data are downloaded from SWQMIS via the "CRP Data Tool" (<a href="https://www8o.tceq.texas.gov/SwqmisWeb/public/crpweb.faces">https://www8o.tceq.texas.gov/SwqmisWeb/public/crpweb.faces</a>) website for all segments within NRA's area of responsibility. The event and result files are formatted for upload into NRA's database. A script is run that loads these data into NRA's database. This allows not only new data to be inserted, but data that has been modified in the SWQMIS database to be updated in the NRA's database. This provides users access to all approved data in NRA's area of responsibility via NRA's website (<a href="https://www.nueces-ra.org/CP/CRP/SWQM/index.php">https://www.nueces-ra.org/CP/CRP/SWQM/index.php</a>), regardless of the collecting and submitting entities.
- Procedure 2: NRA data are loaded using the event and result files that were used for the data submittal after they have been approved. NRA's data are loaded separately to preserve NRA's tag assignment to the profile data.

Errors discovered in these records after inclusion in SWQMIS are determined by comparing lab and field data to data inputted and are manually corrected in NRA databases by the NRA QAO.

The following flow chart summarizes the data path.



### **Data Dictionary**

Terminology and field descriptions are included in the 2019 DMRG, or most recent version.

| criminosog, ama mera accempatera |            | 21.1110, 01 111001100111 | . 0101011         |
|----------------------------------|------------|--------------------------|-------------------|
| Name of Entity                   | Tag Prefix | Submitting Entity        | Collecting Entity |
| Nueces River Authority           | О          | NR                       | NR                |
| Bandera County River Authority   | 0          | NR                       | BA                |
| and Groundwater District         |            |                          |                   |

### **Data Errors and Loss**

Time of lab analysis is compared to holding times for all parameters by WUL, PENS, BCRAGD, SARA REL, LCRA ELS, and NRA. In the event that a holding time is not met, the accompanying narrative is reviewed for an explanation and/or validity of the reported data. This information is entered into the comment field of the event table and the data exceeding the holding times is excluded from the reported data set, if applicable.

To detect and correct errors prior to submission to TCEQ, the scripts that convert the data entered in the online forms check the entered value against the parameter codes minimum and maximum accepted values. In the event that the data are outside the range, the script returns an error message instructing the user to either re-enter the data or to verify the value and place a "1" in an associated box that is equivalent to the "Remark" field of the results table. Date and time entries must also be in valid formats for the scripts to process the data. A report of the records that were added to the table is displayed which can be used to review the data against the field and laboratory data sheets.

### Table D2.1: Data Review Tasks

| dule DZ.1. Data Keview                                                                             | rasks                          |                                                          |                                                         |                                    |
|----------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------|---------------------------------------------------------|------------------------------------|
| Data to be Verified                                                                                | Field<br>Task                  | Laboratory<br>Task                                       | Quality Assurance Task                                  | NRA<br>Data<br>Mana<br>ger<br>Task |
| Sample documentation complete; samples labeled, sites identified                                   | NRA/BCRAGD<br>Field Supervisor |                                                          | NRA QAO<br>BCRAGD QAO                                   |                                    |
| Field QC samples collected for all<br>analytes as prescribed in the TCEQ<br>SWQM Procedures Manual | NRA/BCRAGD<br>Field Supervisor |                                                          | NRA, BCRAGD QAO                                         |                                    |
| Standards and reagents traceable                                                                   | NRA/BCRAGD<br>Field Supervisor | WUL, <mark>PENS</mark> ,<br>SARA REL and<br>LCRA ELS QAO | NRA, PENS, BCRAGD,<br>SARA REL, WUL and<br>LCRA ELS QAO |                                    |
| Chain of custody complete/acceptable                                                               | NRA/BCRAGD<br>Field Supervisor | WUL, PENS,<br>SARA REL and<br>LCRA ELS QAO               | NRA, PENS, BCRAGD,<br>SARA REL, WUL and<br>LCRA ELS QAO |                                    |
| NELAP Accreditation is current                                                                     |                                | WUL, <mark>PENS</mark> ,<br>SARA REL and<br>LCRA ELS QAO | NRA, BCRAGD, SARA<br>REL, WUL, PENS and<br>LCRA ELS QAO |                                    |
| Sample preservation and handling acceptable                                                        | NRA/BCRAGD<br>Field Supervisor | WUL, SARA<br>REL, PENS and<br>LCRA ELS QAO               | NRA, BCRAGD, SARA<br>REL, WUL, PENS and<br>LCRA ELS QAO |                                    |
| Holding times not exceeded                                                                         |                                | WUL, SARA<br>REL, <mark>PENS</mark> and<br>LCRA ELS QAO  | NRA, BCRAGD, SARA<br>REL, WUL, PENS and<br>LCRA ELS QAO | NRA<br>DM                          |
| Collection, preparation, and analysis consistent with SOPs and QAPP                                | NRA/BCRAGD<br>Field Supervisor | WUL, SARA<br>REL, PENS and<br>LCRA ELS QAO               | NRA, BCRAGD, SARA<br>REL, WUL, PENS and<br>LCRA ELS QAO |                                    |
| Field documentation (e.g., biological, stream habitat) complete                                    | NRA/BCRAGD<br>Field Supervisor |                                                          | NRA QAO<br>BCRAGD QAO                                   |                                    |
| Instrument calibration data complete                                                               | NRA/BCRAGD<br>Field Supervisor | WUL, SARA<br>REL, PENS and<br>LCRA ELS QAO               | NRA, BCRAGD, SARA<br>REL, WUL, PENS and<br>LCRA ELS QAO |                                    |
| QC samples analyzed at required frequency                                                          | NRA/BCRAGD<br>Field Supervisor | WUL, PENS,<br>SARA REL and<br>LCRA ELS QAO               | NRA, BCRAGD, SARA<br>REL, WUL, PENS and<br>LCRA ELS QAO |                                    |
| QC results meet performance and program specifications                                             |                                | WUL, SARA<br>REL, PENS and<br>LCRA ELS QAO               | NRA, BCRAGD, SARA<br>REL, WUL, PENS and<br>LCRA ELS QAO |                                    |
| Analytical sensitivity (LOQ/AWRL) consistent with QAPP                                             |                                | WUL, PENS,<br>SARA REL and<br>LCRA ELS QAO               | NRA, BCRAGD, SARA<br>REL, WUL, PENS and<br>LCRA ELS QAO |                                    |
| Results, calculations, transcriptions checked                                                      |                                | WUL, PENS,<br>SARA REL and<br>LCRA ELS QAO               |                                                         |                                    |
| Laboratory bench-level review performed                                                            |                                | WUL, PENS,<br>SARA REL and<br>LCRA ELS QAO               |                                                         |                                    |
| All laboratory samples analyzed for all scheduled parameters                                       |                                | WUL, PENS,<br>SARA REL and<br>LCRA ELS QAO               | NRA QAO                                                 |                                    |
| Corollary data agree                                                                               |                                |                                                          |                                                         | NRA<br>QAO                         |
| Nonconforming activities documented                                                                | NRA/BCRAGD<br>Field Supervisor | NRA and<br>BCRAGD PM &<br>QAO, WUL,                      | NRA, BCRAGD, SARA<br>REL, WUL, PENS and<br>LCRA ELS QAO |                                    |

|                                                                                                                                             |                                 | SARA REL LS,<br>PENS LM & QAO<br>and LCRA ELS<br>LM |                       |           |
|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------|-----------------------|-----------|
| Outliers confirmed and documented; reasonableness check performed                                                                           | NRA Field<br>Supervisor         |                                                     |                       | NRA<br>DM |
| Dates formatted correctly                                                                                                                   |                                 |                                                     |                       | NRA<br>DM |
| Depth reported correctly and in correct units                                                                                               |                                 |                                                     | NRA QAO<br>BCRAGD QAO |           |
| TAG IDs correct                                                                                                                             |                                 |                                                     |                       | NRA<br>DM |
| TCEQ Station ID number assigned                                                                                                             |                                 |                                                     |                       | NRA<br>DM |
| Valid parameter codes                                                                                                                       |                                 |                                                     | NRA QAO               | NRA<br>DM |
| Codes for submitting entity(ies),<br>collecting entity(ies), and<br>monitoring type(s) used correctly                                       |                                 |                                                     | NRA QAO               | NRA<br>DM |
| Time based on 24-hour clock                                                                                                                 |                                 |                                                     | NRA QAO               | NRA<br>DM |
| Check for transcription errors                                                                                                              | NRA Field<br>Supervisor         |                                                     | NRA QAO               |           |
| Sampling and analytical data gaps<br>checked (e.g., all sites for which data<br>are reported are on the coordinated<br>monitoring schedule) |                                 |                                                     |                       | NRA<br>DM |
| Field instrument pre- and post-<br>calibration results within limits                                                                        | NRA. BCRAGD<br>Field Supervisor |                                                     | NRA QAO<br>BCRAGD QAO |           |
| 10% of data manually reviewed                                                                                                               | •                               | WUL LM, PENS<br>LM, LCRA ELS<br>and SARA REL<br>LS  | NRA QAO               |           |

### Appendix A: Measurement Performance Specifications (Table A7.1 & A7.8)

| TABLE A7.1 Measurement Performance Specifications for the Nueces River Authority |             |             |                                 |                     |              |           |                                |                                    |                         |      |
|----------------------------------------------------------------------------------|-------------|-------------|---------------------------------|---------------------|--------------|-----------|--------------------------------|------------------------------------|-------------------------|------|
|                                                                                  |             | Co          | nventional                      | Parameters          | s in Wat     | er        |                                |                                    |                         |      |
| Parameter                                                                        | Units       | Matrix      | Method                          | Parameter<br>Code   | AWRL         | LOQ       | LOQ<br>Check<br>Sample<br>%Rec | Precision<br>(RPD) of<br>LCS/LCSD) | Bias<br>%Rec.<br>of LCS | Lab  |
| ALKALINITY, TOTAL<br>(MG/L AS CACO <sub>3</sub> )                                | mg/L        | water       | SM2320B                         | 00410               | 20           | 20        | NA                             | 20                                 | NA                      | WUL  |
| RESIDUE, TOTAL<br>NONFILTRABLE (MG/L)                                            | mg/L        | water       | SM2540D                         | 00530               | 5            | NA        | NA                             | NA                                 | NA                      | WUL  |
| NITROGEN, AMMONIA,<br>TOTAL (MG/L AS N)                                          | mg/L        | water       | EPA350.1<br>Rev. 2.0<br>(1993)  | 00610               | 0.1          | 0.1       | 70-130                         | 20                                 | 80-<br>120              | WUL  |
| NITRITE NITROGEN, TOTAL<br>(MG/L AS N)                                           | mg/L        | water       | EPA 300.0<br>Rev. 2.1<br>(1993) | 00615               | 0.05         | 0.02      | 70-130                         | 20                                 | 80-<br>120              | WUL  |
| NITRATE NITROGEN,<br>TOTAL (MG/L AS N)                                           | mg/L        | water       | EPA 300.0<br>Rev. 2.1<br>(1993) | 00620               | 0.05         | 0.02<br>5 | 70-130                         | 20                                 | 80-<br>120              | WUL  |
| NITRITE NITROGEN, TOTAL (MG/L AS N)                                              | mg/L        | water       | EPA 353.2                       | 00615               | 0.05         | 0.02      | 70-130                         | 20                                 | 80-<br>120              | WUL  |
| NITRATE NITROGEN,<br>TOTAL (MG/L AS N)                                           | mg/L        | water       | EPA 353.2                       | 00620               | 0.05         | 0.02      | 70-130                         | 20                                 | 80-<br>120              | WUL  |
| NITROGEN, KJELDAHL,<br>TOTAL (MG/L AS N)                                         | mg/L        | water       | EPA 351.4                       | 00625               | 0.2          | 0.2       | 70-130                         | 20                                 | 80-<br>120              | WUL  |
| PHOSPHORUS, TOTAL, WET<br>METHOD (MG/L AS P)                                     | mg/L        | water       | EPA365.1                        | 00665               | 0.06         | 0.06      | 70-130                         | 20                                 | 80-<br>120              | WUL  |
| CARBON, TOTAL ORGANIC,<br>NPOC (TOC), MG/L                                       | mg/L        | water       | SM5310 C                        | 00680               | 2            | 0.3       | NA                             | NA                                 | NA                      | WUL  |
| CHLORIDE (MG/L AS CL)                                                            | mg/L        | water       | EPA 300.0<br>Rev. 2.1<br>(1993) | 00940               | 5            | 0.3       | 70-130                         | 20                                 | 80-<br>120              | WUL  |
| SULFATE (MG/L AS SO4)                                                            | mg/L        | water       | EPA 300.0<br>Rev. 2.1<br>(1993) | 00945               | 5            | 0.1       | 70-130                         | 20                                 | 80-<br>120              | WUL  |
| RESIDUE, TOTAL<br>FILTRABLE (DRIED AT<br>180C) (MG/L)                            | mg/L        | water       | SM2540C                         | 70300               | 10           | 2.5       | NA                             | 20                                 | 80-<br>120              | WUL  |
| CHLOROPHYLL-A,<br>FLUOROMETRIC METHOD,<br>UG/L                                   | μg/L        | water       | EPA 445.0                       | 70953               | 3            | 2         | NA                             | NA                                 | NA                      | WUL  |
| PHEOPHYTIN-A UG/L<br>FLUOROMETRIC METHOD                                         | μg/L        | water       | EPA 445.0                       | 32213               | 3            | 2         | NA                             | NA                                 | NA                      | WUL  |
| CHLOROPHYLL-A,<br>FLUOROMETRIC METHOD,<br>UG/L                                   | μg/L        | water       | EPA <mark>445.0</mark>          | <mark>70953</mark>  | 3            | 2         | NA                             | NA                                 | NA                      | PENS |
| PHEOPHYTIN-A UG/L<br>FLUOROMETRIC METHOD                                         | μg/L        | water       | EPA <mark>445.0</mark>          | <mark>32213</mark>  | 3            | 2         | NA                             | NA                                 | NA                      | PENS |
| United States Environmental Protection                                           | n Agency (U | SEPA) Metho | ods for Chemical An             | alysis of Water and | d Wastes, Ma | nual #EPA | x-600/4-79-02                  | 0                                  |                         |      |

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 20th Edition, 1998. (Note: The 21st edition may be cited if it becomes available.)

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

TCEQ SOP, V2 - TCEQ Surface Water Quality Monitoring Procedures, Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data, 2014 (RG-416)

### TABLE A7.3 Measurement Performance Specifications for the Nueces River Authority and BCRAGD Field Parameters

|                                                                        |                            |        | rieiu rara                        | ameters           | 1    |     |                                | 1                                  | 1                         |
|------------------------------------------------------------------------|----------------------------|--------|-----------------------------------|-------------------|------|-----|--------------------------------|------------------------------------|---------------------------|
| Parameter                                                              | Units                      | Matrix | Method                            | Parameter<br>Code | AWRL | LOQ | LOQ<br>Check<br>Sample<br>%Rec | Precision<br>(RPD) of<br>LCS/LCSD) | Bias<br>%Rec<br>of<br>LCS |
| TEMPERATURE, WATER (DEGREES CENTIGRADE)                                | DEG C                      | water  | SM 2550 B and<br>TCEQ SOP V1      | 00010             | NA   | NA  | NA                             | NA                                 | NA                        |
| AIR TEMPERATURE                                                        | DEG C                      | air    | TCEQ SOP                          | 00020             | NA   | NA  | NA                             | NA                                 | NA                        |
| TRANSPARENCY, SECCHI<br>DISC (METERS)                                  | meters                     | water  | TCEQ SOP V1                       | 00078             | NA   | NA  | NA                             | NA                                 | NA                        |
| SPECIFIC CONDUCTANCE,<br>FIELD (US/CM @ 25C)                           | μs/cm                      | water  | EPA 120.1 and<br>TCEQ SOP, V1     | 00094             | NA   | NA  | NA                             | NA                                 | NA                        |
| OXYGEN, DISSOLVED<br>(MG/L)                                            | mg/L                       | water  | SM 4500-O G<br>and<br>TCEQ SOP V1 | 00300             | NA   | NA  | NA                             | NA                                 | NA                        |
| PH (STANDARD UNITS)                                                    | s.u.                       | water  | EPA 150.1 and<br>TCEQ SOP V1      | 00400             | NA   | NA  | NA                             | NA                                 | NA                        |
| SALINITY - PARTS PER<br>THOUSAND                                       | ppt                        | water  | SM 2520 and<br>TCEQ SOP V1        | 00480             | NA   | NA  | NA                             | NA                                 | NA                        |
| DAYS SINCE<br>PRECIPITATION EVENT<br>(DAYS)                            | days                       | other  | TCEQ SOP V1                       | 72053             | NA   | NA  | NA                             | NA                                 | NA                        |
| DEPTH OF BOTTOM OF<br>WATER BODY AT SAMPLE<br>SITE                     | meters                     | water  | TCEQ SOP V2                       | 82903             | NA   | NA  | NA                             | NA                                 | NA                        |
| RESERVOIR STAGE (FEET ABOVE MEAN SEA LEVEL) †                          | FT ABOVE<br>MSL            | water  | TWDB                              | 00052             | NA   | NA  | NA                             | NA                                 | NA                        |
| RESERVOIR PERCENT<br>FULL <sup>†</sup>                                 | %<br>RESERVOIR<br>CAPACITY | water  | TWDB                              | 00053             | NA   | NA  | NA                             | NA                                 | NA                        |
| RESERVOIR ACCESS NOT<br>POSSIBLE LEVEL TOO LOW<br>ENTER 1 IF REPORTING | NS                         | other  | TCEQ Drought<br>Guidance          | 00051             | NA   | NA  | NA                             | NA                                 | NA                        |
| MAXIMUM POOL WIDTH<br>AT TIME OF STUDY<br>(METERS)*                    | meters                     | other  | TCEQ SOP V2                       | 89864             | NA   | NA  | NA                             | NA                                 | NA                        |
| MAXIMUM POOL DEPTH<br>AT TIME OF<br>STUDY(METERS)*                     | meters                     | other  | TCEQ SOP V2                       | 89865             | NA   | NA  | NA                             | NA                                 | NA                        |
| POOL LENGTH, METERS*                                                   | meters                     | other  | TCEQ SOP V2                       | 89869             | NA   | NA  | NA                             | NA                                 | NA                        |
| % POOL COVERAGE IN 500<br>METER REACH*                                 | %                          | other  | TCEQ SOP V2                       | 89870             | NA   | NA  | NA                             | NA                                 | NA                        |

| WIND INTENSITY                                                                                       |        | .,    |          |                    |    |    |    |    |    |
|------------------------------------------------------------------------------------------------------|--------|-------|----------|--------------------|----|----|----|----|----|
| (1=CALM,2=SLIGHT,<br>3=MOD.,4=STRONG)                                                                | NU     | other | NA       | 89965              | NA | NA | NA | NA | NA |
| PRESENT WEATHER<br>(1=CLEAR,2=PTCLDY,<br>3=CLDY,4=RAIN,5=OTHER)                                      | NU     | other | NA       | 89966              | NA | NA | NA | NA | NA |
| WATER SURFACE<br>(1=CALM,2=RIPPLE,<br>3=WAVE,4=WHITECAP)                                             | NU     | water | NA       | 89968              | NA | NA | NA | NA | NA |
| WATER COLOR<br>(1=BROWN,2=REDDISH,<br>3=GREEN, 4=BLACK,<br>5=CLEAR,6=OTHER)                          | NU     | water | TCEQ SOP | 89969              | NA | NA | NA | NA | NA |
| WATER ODOR (1=SEWAGE,<br>2=OILY/CHEMICAL,<br>3=ROTTEN EGGS,<br>4=MUSKY,5=FISHY,<br>6=NONE, 7=OTHER)  | NU     | water | TCEQ SOP | <mark>89971</mark> | NA | NA | NA | NA | NA |
| TIDE STAGE<br>(1=LOW,2=FALLING,<br>3=SLACK,4=RISING,5=HI)                                            | NU     | water | NA       | 89972              | NA | NA | NA | NA | NA |
| RAINFALL IN 1 DAY<br>INCLUSIVE PRIOR TO<br>SAMPLE (IN)                                               | inches | other | TCEQ SOP | 82553              | NA | NA | NA | NA | NA |
| RAINFALL IN 7 DAY<br>INCLUSIVE PRIOR TO<br>SAMPLE (IN)                                               | inches | other | TCEQ SOP | 82554              | NA | NA | NA | NA | NA |
| TURBIDITY<br>(1=LOW,2=MEDIUM,<br>3=HIGH)                                                             | NU     | water | TCEQ SOP | 88842              | NA | NA | NA | NA | NA |
| WIND DIRECTION (1=NORTH,2=SOUTH, 3=EAST, 4=WEST, 5=NORTHEAST, 6=SOUTHEAST, 7=NORTHWEST, 8=SOUTHWEST) | NU     | other | NA       | 89010              | NA | NA | NA | NA | NA |
|                                                                                                      |        |       |          |                    |    |    |    |    |    |

<sup>\*</sup> To be <u>routinely reported</u> when collecting data from perennial pools.

 $\ \ \, + \text{As published by the Texas Water Development Board on their website http://wiid.twdb.state.tx.us/ims/resinfo/BushButton/lakestatus.asp?selcat=3\&slbasin=2\\$ 

References:

 $United\ States\ Environmental\ Protection\ Agency\ (USEPA)\ Methods\ for\ Chemical\ Analysis\ of\ Water\ and\ Wastes,\ Manual\ \#EPA-600/4-79-020$ 

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examinat Water and Wastewater, 20th Edition, 1998. (Note: The 21st edition may be cited if it becomes available.)

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

TCEQ SOP, V2 - TCEQ Surface Water Quality Monitoring Procedures, Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data, 2014 (RG-4

| TABLE A7.8 Mea                           | TABLE A7.8 Measurement Performance Specifications for the Nueces River Authority |        |                                     |                   |                                                                   |     |                                    |                                    |                         |               |  |
|------------------------------------------|----------------------------------------------------------------------------------|--------|-------------------------------------|-------------------|-------------------------------------------------------------------|-----|------------------------------------|------------------------------------|-------------------------|---------------|--|
|                                          |                                                                                  |        |                                     | Metals in Wat     | er (Dissolv                                                       |     |                                    |                                    |                         |               |  |
| Parameter                                | Units                                                                            | Matrix | Method                              | Parameter<br>Code | TCEQ<br>AWRL                                                      | LOQ | LOQ<br>Check<br>Sampl<br>e<br>%Rec | Precision<br>(RPD) of<br>LCS/LCSD) | Bias<br>%Rec.<br>of LCS | Lab           |  |
| ALUMINUM,<br>DISSOLVED<br>(UG/L AS AL)   | μg/L                                                                             | water  | EPA<br>200.7<br>Rev 4.4<br>(1994)   | 01106             | 200                                                               | 50  | 70-130                             | 20                                 | 80-120                  | LCRA<br>ELS   |  |
| ARSENIC,<br>DISSOLVED<br>(UG/L AS AS)    | μg/L                                                                             | water  | EPA<br>200.8                        | 01000             | 5                                                                 | 2   | 70-130                             | 20                                 | 80-120                  | LCRA<br>ELS   |  |
| BARIUM,<br>DISSOLVED<br>(UG/L AS BA)     | μg/L                                                                             | water  | EPA<br>200.8                        | 01005             | 1000                                                              | 1   | 70-130                             | 20                                 | 80-120                  | LCRA<br>ELS   |  |
| BERYLLIUM,<br>DISSOLVED<br>(UG/L AS BE)  | μg/L                                                                             | water  | EPA<br>200.8                        | 01010             | 2                                                                 | 1   | 70-130                             | 20                                 | 80-120                  | LCRA<br>ELS   |  |
| CADMIUM,<br>DISSOLVED (UG<br>AS CD)      | μg/L                                                                             | water  | EPA<br>200.7_8<br>Rev 5.4<br>(1998) | 01025             | 0.1 for<br>waters<br><50mg/L<br>hardness<br><br>0.3 for<br>waters | 0.1 | 70-130                             | 20                                 | 80-120                  | Energy<br>Lab |  |
|                                          |                                                                                  |        |                                     |                   | >50mg/L<br>hardness                                               |     |                                    |                                    |                         |               |  |
| CALCIUM,<br>DISSOLVED<br>(MG/L AS CA)    | mg/L                                                                             | water  | EPA<br>200.7                        | 00915             | NA NA                                                             | 0.2 | 70-130                             | 20                                 | 80-120                  | LCRA<br>ELS   |  |
| CHROMIUM,<br>DISSOLVED<br>(UG/L AS CR)   | μg/L                                                                             | water  | EPA<br>200.8<br>Rev 5.4<br>(1998)   | 01030             | 10                                                                | 1   | 70-130                             | 20                                 | 80-120                  | LCRA<br>ELS   |  |
| COBALT,<br>DISSOLVED<br>(UG/L AS CO)     | μg/L                                                                             | water  | EPA<br>200.8                        | 01035             | NA                                                                | 1   | 70-130                             | 20                                 | 80-120                  | LCRA<br>ELS   |  |
| COPPER,<br>DISSOLVED<br>(UG/L AS CU)     | μg/L                                                                             | water  | EPA<br>200.8<br>Rev 5.4<br>(1998)   | 01040             | 1 for<br>waters<br><50mg/L<br>hardness                            | 1.0 | 70-130                             | 20                                 | 80-120                  | LCRA<br>ELS   |  |
|                                          |                                                                                  |        |                                     |                   | 3 for<br>waters<br>>50mg/L<br>hardness                            |     |                                    |                                    |                         |               |  |
| IRON,<br>DISSOLVED<br>(UG/L)             | μg/L                                                                             | water  | EPA<br>200.7                        | 01046             | NA                                                                | 50  | 70-130                             | 20                                 | 80-120                  | LCRA<br>ELS   |  |
| MERCURY<br>DISSOLVED, IN<br>WATER (UG/L) | μg/L                                                                             | water  | EPA<br>245.1                        | 71890             | NA                                                                | 0.2 | 70-130                             | 20                                 | 80-120                  | LCRA<br>ELS   |  |

| Parameter                                               | Units | Matrix | Method                            | Parameter<br>Code | TCEQ<br>AWRL | LOQ  | LOQ<br>Check<br>Sampl<br>e<br>%Rec | Precision<br>(RPD) of<br>LCS/LCSD) | Bias<br>%Rec.<br>of LCS | Lab         |
|---------------------------------------------------------|-------|--------|-----------------------------------|-------------------|--------------|------|------------------------------------|------------------------------------|-------------------------|-------------|
| MOLYBDENUM,<br>DISSOLVED<br>(UG/L AS MO)                | μg/L  | water  | EPA<br>200.8                      | 01060             | NA           | 1    | 70-130                             | 20                                 | 80-120                  | LCRA<br>ELS |
| NICKEL,<br>DISSOLVED<br>(UG/L AS NI)                    | μg/L  | water  | EPA<br>200.8<br>Rev 5.4<br>(1998) | 01065             | 10           | 1    | 70-130                             | 20                                 | 80-120                  | LCRA<br>ELS |
| POTASSIUM,<br>DISSOLVED<br>(MG/L AS K)                  | mg/L  | water  | EPA<br>200.7                      | 00935             | NA           | 0.2  | 70-130                             | 20                                 | 80-120                  | LCRA<br>ELS |
| SELENIUM,<br>DISSOLVED<br>(UG/L AS SE)                  | μg/L  | water  | EPA<br>200.8                      | 01145             | NA<br>NA     | 2    | 70-130                             | 20                                 | 80-120                  | LCRA<br>ELS |
| SILVER,<br>DISSOLVED<br>(UG/L AS AG)                    | μg/L  | water  | EPA<br>200.8<br>Rev 5.4<br>(1998) | 01075             | 0.5          | 0.5  | 70-130                             | 20                                 | 80-120                  | LCRA<br>ELS |
| SODIUM,<br>DISSOLVED<br>(MG/L AS NA)                    | mg/L  | water  | EPA<br>200.7                      | 00930             | NA           | 0.2  | 70-130                             | 20                                 | 80-120                  | LCRA<br>ELS |
| STRONTIUM,<br>DISSOLVED,<br>(UG/L AS SR)                | μg/L  | water  | EPA<br>200.7                      | 01080             | NA           | 10   | 70-130                             | 20                                 | 80-120                  | LCRA<br>ELS |
| THALLIUM,<br>DISSOLVED<br>(UG/L AS TL)                  | μg/L  | water  | EPA<br>200.8                      | 01057             | 1            | 1    | 70-130                             | 20                                 | 80-120                  | LCRA<br>ELS |
| TITANIUM,<br>DISSOLVED,<br>(UG/L AS TI)                 | μg/L  | water  | EPA<br>200.8                      | 01150             | NA           | 1    | 70-130                             | 20                                 | 80-120                  | LCRA<br>ELS |
| VANADIUM,<br>DISSOLVED<br>(UG/L AS V)                   | μg/L  | water  | EPA<br>200.8                      | 01085             | NA           | 1    | 70-130                             | 20                                 | 80-120                  | LCRA<br>ELS |
| ZINC,<br>DISSOLVED<br>(UG/L AS ZN)                      | μg/L  | water  | EPA<br>200.8<br>Rev 5.4<br>(1998) | 01090             | 5            | 5    | 70-130                             | 20                                 | 80-120                  | LCRA<br>ELS |
|                                                         |       |        |                                   | Metals in W       | ater (Tota   | d)   |                                    |                                    |                         |             |
| HARDNESS,<br>TOTAL<br>(MG/L AS<br>CACO <sub>3</sub> ) * | mg/L  | water  | SM 2340<br>B                      | 82394             | 5            | 1.32 | NA                                 | 20                                 | 80-120                  | LCRA<br>ELS |
| ANTIMONY,<br>TOTAL<br>(UG/L AS SB)                      | μg/L  | water  | EPA<br>200.8                      | 01097             | NA           | 1    | 70-130                             | 20                                 | 80-120                  | LCRA<br>ELS |
| BARIUM, TOTAL<br>(UG/L AS BA)                           | μg/L  | water  | EPA<br>200.8                      | 01007             | NA           | 1    | 70-130                             | 20                                 | 80-120                  | LCRA<br>ELS |
| BERYLLIUM,<br>TOTAL<br>(UG/L AS BE)                     | μg/L  | water  | EPA<br>200.8                      | 01012             | NA           | 1    | 70-130                             | 20                                 | 80-120                  | LCRA<br>ELS |

| Parameter                                  | Units | Matrix | Method                            | Parameter<br>Code | TCEQ<br>AWRL      | LOQ   | LOQ<br>Check<br>Sampl<br>e<br>%Rec | Precision<br>(RPD) of<br>LCS/LCSD) | Bias<br>%Rec.<br>of LCS | Lab                |
|--------------------------------------------|-------|--------|-----------------------------------|-------------------|-------------------|-------|------------------------------------|------------------------------------|-------------------------|--------------------|
| CALCIUM,<br>TOTAL<br>(MG/L AS CA)          | mg/L  | water  | EPA<br>200.7                      | 00916             | 0.5               | 0.2   | 70-130                             | 20                                 | 80-120                  | LCRA<br>ELS        |
| CHROMIUM,<br>TOTAL<br>(UG/L AS CR)         | μg/L  | water  | EPA<br>200.8                      | 01034             | NA                | 1     | 70-130                             | 20                                 | 80-120                  | LCRA<br>ELS        |
| COBALT, TOTAL<br>(UG/L AS CO)              | μg/L  | water  | EPA<br>200.8                      | 01037             | NA                | 1     | 70-130                             | 20                                 | 80-120                  | LCRA<br>ELS        |
| COPPER, TOTAL<br>(UG/L AS CU)              | μg/L  | water  | EPA<br>200.8                      | 01042             | 1 <mark>NA</mark> | 1     | 70-130                             | 20                                 | 80-120                  | LCRA<br>ELS        |
| IRON, TOTAL                                | μg/L  | water  | EPA                               | 01045             | 300               | 50    | 70-130                             | 20                                 | 80-120                  | LCRA               |
| (UG/L AS FE) MAGNESIUM, TOTAL (MG/L AS MG) | mg/L  | water  | 200.7<br>EPA<br>200.7             | 00927             | 0.5               | 0.2   | 70-130                             | 20                                 | 80-120                  | ELS<br>LCRA<br>ELS |
| MANGANESE,<br>TOTAL (UG/L AS<br>MN)        | μg/L  | water  | EPA<br>200.8                      | 01055             | 50                | 1     | 70-130                             | 20                                 | 80-120                  | LCRA<br>ELS        |
| MERCURY,<br>TOTAL, WATER                   | μg/L  | water  | EPA<br>245.1                      | 71900             | 0.006             | 0.005 | 70-130                             | 20                                 | 80-120                  | Energy<br>Lab      |
| MOLYBDENUM,<br>TOTAL (UG/L AS<br>MO)       | μg/L  | water  | EPA<br>200.8                      | 01062             | NA<br>NA          | 1     | 70-130                             | 20                                 | 80-120                  | LCRA<br>ELS        |
| NICKEL, TOTAL<br>(UG/L AS NI)              | μg/L  | water  | EPA<br>200.8                      | 01067             | NA                | 1     | 70-130                             | 20                                 | 80-120                  | LCRA<br>ELS        |
| POTASSIUM,<br>TOTAL<br>(MG/L AS K)         | mg/L  | water  | EPA<br>200.7                      | 00937             | NA<br>NA          | 2     | 70-130                             | 20                                 | 80-120                  | LCRA<br>ELS        |
| SELENIUM,<br>TOTAL<br>(UG/L AS SE)         | μg/L  | water  | EPA<br>200.8<br>Rev 5.4<br>(1998) | 01147             | 2                 | 2     | 70-130                             | 20                                 | 80-120                  | LCRA<br>ELS        |
| SILVER, TOTAL<br>(UG/L AS AG)              | μg/L  | water  | EPA<br>200.8                      | 01077             | NA                | 0.5   | 70-130                             | 20                                 | 80-120                  | LCRA<br>ELS        |
| SODIUM, TOTAL<br>(MG/L AS NA)              | mg/L  | water  | EPA<br>200.7                      | 00929             | <mark>NA</mark>   | 0.2   | 70-130                             | 20                                 | 80-120                  | LCRA<br>ELS        |
| THALLIUM, TOTAL (UG/L AT TL)               | μg/L  | water  | EPA<br>200.8                      | 01059             | NA<br>NA          | 1     | 70-130                             | 20                                 | 80-120                  | LCRA<br>ELS        |
| TIN, TOTAL,<br>(UG/L AS SN)                | μg/L  | water  | EPA<br>200.7                      | 01102             | NA                | 50    | 70-130                             | 20                                 | 80-120                  | LCRA<br>ELS        |
| TITANIUM,<br>TOTAL,<br>(UG/L AS TI)        | μg/L  | water  | EPA<br>200.8                      | 01152             | NA                | 1     | 70-130                             | 20                                 | 80-120                  | LCRA<br>ELS        |
| ZINC, TOTAL<br>(UG/L AS ZN)                | μg/L  | water  | EPA<br>200.8                      | 01092             | NA                | 5     | 70-130                             | 20                                 | 80-120                  | LCRA<br>ELS        |

### **TASK 3: WATER QUALITY MONITORING**

**Objectives:** Water quality monitoring will focus on the characterization of a variety of locations and conditions. This will include a combination of the following:

- planning and coordinating basin-wide monitoring;
- routine, regularly scheduled monitoring to collect long-term information and support statewide assessment of water quality; and
- systematic, regularly scheduled short-term monitoring to screen water bodies for issues.

**Task Description:** The Performing Party, working closely with TCEQ, conducts watershed monitoring to identify and evaluate surface water quality issues and to establish priorities for corrective action. Under this program, the Performing Party is responsible for the San Antonio – Nueces Coastal Basin, the Nueces River Basin, the Nueces – Rio Grande Coastal Basin, and the adjacent bays and estuaries.

The Performing Party will complete the following subtasks:

**Monitoring Description** - In FY 2022, the Performing Party will monitor the following for a minimum:

- Nine bay and tidal sites quarterly for conventional, bacteria, and field parameters,
- Two bay and tidal sites on a semi-annual basis for conventional, bacteria, metals, and field parameters
- One bay or tidal site monitored quarterly will also include semi-annual metals monitoring
- 38 river and lake sites quarterly for conventional, bacteria, flow (where applicable), and field parameters (Five river sites will also include semi-annual metals monitoring),
- One river site quarterly for bacteria and field parameters only,
- One river site quarterly for field parameters only, and
- Three sites will be monitored for 24-hour dissolved oxygen if there is sufficient water.

The Performing Party will conduct additional monitoring in Choke Canyon Reservoir (Segment 2116). This includes additional monitoring events at three existing monitoring sites such that monthly monitoring is conducted for nutrients, field parameters, and 24-hour field parameters. In addition to the existing monitoring sites, the Performing Party will conduct monthly monitoring for nutrient and field parameters, and 24-hour field parameter monitoring at least once per quarter, at one new site.

In FY 2023, the Performing Party will monitor at a similar level of effort as in FY 2022. The actual number of sites, location, frequency, and parameters collected for FY 2023 will be based on priorities identified at the Basin Steering Committee and Coordinated Monitoring meetings and included in the amended Appendix B schedule of the QAPP.

All monitoring will be completed in accordance with the Performing Party QAPP, the TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods (RG-415) and the TCEQ Surface Water Quality Monitoring Procedures, Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data (RG-416).

### Appendix B Sampling Process Design and Monitoring Schedule (plan)

### Sample Design Rationale FY2022

Due to the delayed execution of the NRA FY22-23 CRP Contract Amendment 1, NRA was unable to conduct additional monitoring in FY22.

#### Sample Design Rationale FY 2023

The sample design is based on the legislative intent of CRP. Under the legislation, the Basin Planning Agencies have been tasked with providing data to characterize water quality conditions in support of the Texas Water Quality Integrated Report, and to identify significant long-term water quality trends. Based on Steering Committee input, achievable water quality objectives and priorities and the identification of water quality issues are used to develop work plans which are in accord with available resources. As part of the Steering Committee process, the Nueces River Authority coordinates closely with the TCEQ and other participants to ensure a comprehensive water monitoring strategy within the watershed.

Segment 2104 – One quarterly monitoring station located on the Nueces River at FM 1042 (Station Id 12972) will include metals in water monitoring on a semi-annual frequency.

Segment 2109 – One quarterly monitoring station located on the Leona River at FM 1581 (Station Id 12985) will be added due to additional monitoring funds.

Segment 2112 – Three quarterly monitoring stations located on the Upper Nueces River (Station Ids 22331, 22330, and 13005) will be added due to additional monitoring funds.

Segment 2116 - Three quarterly monitoring stations located on Choke Canyon Reservoir (Station Ids 17389, 13019, and 13020) will be monitored on a monthly frequency for nutrients, chlorophyll-a, pheophytin, and 24-hour DO parameters Station 17389 will include metals in water monitoring on a semi-annual frequency. One quarterly routine plus quarterly 24-hour DO monitoring station located on Choke Canyon Reservoir (Station Id 22328) will be added due to additional monitoring funds

Segment 2117 - One quarterly monitoring station located on the Frio River at SH 16 (Station Id 13023) will include metals in water monitoring on a semi-annual frequency. One quarterly monitoring located a I-35 north of Dilley (Station ID 13024) will be added due to additional monitoring funds.

Segment 2472 - One quarterly monitoring station located on Port Bay at SH 188 (Station Id 13405) will include metals in water monitoring on a semi-annual frequency.

Segment 2483 - One quarterly monitoring station located on Conn Brown Harbor (Station Id 18848) will include metals in water monitoring on a semi-annual frequency.

Table B1.1 Sample Design and Schedule, FY 2023 Basin 20 Site Description Amb Tox Water Organic Water Waterbody ID Amb Tox Sed Metal Water Organic Sed Fish Tissue Metal Sed Comments Station ID Benthics Bacteria Nekton 24 hr DO AqHab Field Reg MT Œ MISSION RIVER TIDAL NEAR SOUTH BANK IMMEDIATELY DOWNSTREAM OF NR NR RT12943 2001 14 4 4 4 THE FM 2678 **BRIDGE BETWEEN** REFUGIO AND **BAYSIDE** MISSION RIVER **IMMEDIATELY UPSTREAM OF US** NR RT 12944 2002 14 NR 4 4 4 77 BRIDGE AT **REFUGIO** CHILTIPIN CREEK MID CHANNEL AT UNNAMED BRIDGE POSSIBLY AKA PLYMOUTH ROAD NR RT 12930 2003A NR 14 2 4 2.11 KM DOWNSTREAM OF N END FM 631 NE OF SINTON ARANSAS RIVER TIDAL AT BOAT RAMP ON FM 629 12947 2003 NR NR RT 14 4 4 4

TERMINUS SOUTH OF BONNIE VIEW

| ARANSAS RIVER AT<br>COUNTY ROAD<br>EAST OF<br>SKIDMORE                                                            | 12952      | 2004         | 14  | NR | NR | RT |          |       |          |        |             |               |           |             | 4    |               |             | 4        | 4    |             | 4     |                                                   |
|-------------------------------------------------------------------------------------------------------------------|------------|--------------|-----|----|----|----|----------|-------|----------|--------|-------------|---------------|-----------|-------------|------|---------------|-------------|----------|------|-------------|-------|---------------------------------------------------|
|                                                                                                                   |            |              | u . | ı  |    |    | Basin    | 20 -  | Cont     | inue   | d           | ·             |           |             |      | I.            |             |          |      | I.          |       |                                                   |
| Site Description                                                                                                  | Station ID | Waterbody ID | Reg | SE | CE | MT | 24 hr DO | АдНар | Benthics | Nekton | Metal Water | Organic Water | Metal Sed | Organic Sed | Conv | Amb Tox Water | Amb Tox Sed | Bacteria | Flow | Fish Tissue | Field | Comments                                          |
| ARANSAS CREEK<br>AT US 181 NORTH<br>OF SKIDMORE IN<br>BEE COUNTY                                                  | 12941      | 2004A        | 14  | NR | NR | RT |          |       |          |        |             |               |           |             |      |               |             | 4        | 4    |             | 4     |                                                   |
| POESTA CREEK, 77<br>M DOWNSTREAM<br>OF SH 202                                                                     | 12937      | 2004B        | 14  | NR | NR | RT |          |       |          |        |             |               |           |             | 4    |               |             | 4        | 4    |             | 4     |                                                   |
|                                                                                                                   |            |              |     |    |    |    |          | Bas   | in 21    |        |             |               |           |             |      |               |             |          |      |             |       |                                                   |
| NUECES RIVER AT<br>BLUNTZER BRIDGE<br>ON FM 666                                                                   | 12964      | 2102         | 14  | NR | NR | RT |          |       |          |        |             |               |           |             | 4    |               |             | 4        | 4    |             | 4     |                                                   |
| NUECES RIVER AT<br>LA FRUTA BRIDGE<br>ON SH 359                                                                   | 12965      | 2102         | 14  | NR | NR | RT |          |       |          |        |             |               |           |             | 4    |               |             | 4        | 4    |             | 4     | TDS,<br>Chlorophyl<br>I-<br>a/Pheoph<br>ytin only |
| NUECES RIVER<br>BELOW LAKE<br>CORPUS CHRISTI<br>AT HAZEL<br>BAZEMORE PARK<br>BOAT RAMP 4.5 KM<br>UPSTREAM OF I-37 | 20936      | 2102         | 14  | NR | NR | RT |          |       |          |        |             |               |           |             | 4    |               |             | 4        | 4    |             | 4     |                                                   |

| NUECES RIVER<br>IMMEDIATELY<br>UPSTREAM OF THE<br>SALTWATER<br>BARRIER DAM AT<br>LABONTE PARK            | 21815      | 2102         | 14  | NR | NR | RT |          |       |          |        |             |               |           |             | 4    |               |             | 4        | 4   |             | 4     | TDS,<br>Chlorophyl<br>I-<br>a/Pheoph<br>ytin only |
|----------------------------------------------------------------------------------------------------------|------------|--------------|-----|----|----|----|----------|-------|----------|--------|-------------|---------------|-----------|-------------|------|---------------|-------------|----------|-----|-------------|-------|---------------------------------------------------|
|                                                                                                          |            |              | •   | •  | •  |    | Basin    | 21 -  | Cont     | inue   | d           |               |           |             |      |               |             |          |     |             |       |                                                   |
| Site Description                                                                                         | Station ID | Waterbody ID | Reg | SE | CE | TW | 24 hr DO | AqHab | Benthics | Nekton | Metal Water | Organic Water | Metal Sed | Organic Sed | Conv | Amb Tox Water | Amb Tox Sed | Bacteria | HOW | Fish Tissue | Field | Comments                                          |
| LAKE CORPUS<br>CHRISTI MID-LAKE<br>AT THE DAM 380 M<br>NNW OF<br>NORTHERN TIP OF<br>DAM USGS SITE        | 12967      | 2103         | 14  | NR | NR | RT |          |       |          |        |             |               |           |             | 4    |               |             | 4        |     |             | 4     |                                                   |
| LAKE CORPUS<br>CHRISTI APPROX.<br>0.2 MI OFF<br>WESTERN SHORE<br>DIRECTLY WEST OF<br>HIDEAWAY HILLS      | 17384      | 2103         | 14  | NR | NR | RT |          |       |          |        |             |               |           |             | 4    |               |             | 4        |     |             | 4     |                                                   |
| NUECES RIVER AT<br>LIVE OAK CR 151<br>NEAR RIVER<br>CREEK ACRES<br>UPSTREAM OF<br>LAKE CORPUS<br>CHRISTI | 17648      | 2103         | 14  | NR | NR | RT |          |       |          |        |             |               |           |             | 4    |               |             | 4        | 4   |             | 4     |                                                   |
| NUECES RIVER AT<br>FM 1042 BRIDGE 1.2<br>MILES NORTH OF<br>SIMMONS                                       | 12972      | 2104         | 14  | NR | NR | RT |          |       |          |        | 2           |               |           |             | 4    |               |             | 4        | 4   |             | 4     |                                                   |

| NUECES RIVER AT<br>SH 16 SOUTH OF<br>TILDEN                  | 12973      | 2104         | 16  | NR | NR | RT |          |       |          |        |             |               |           |             | 4    |               |             | 4        | 4    |             | 4     |          |
|--------------------------------------------------------------|------------|--------------|-----|----|----|----|----------|-------|----------|--------|-------------|---------------|-----------|-------------|------|---------------|-------------|----------|------|-------------|-------|----------|
| NUECES RIVER AT<br>FM 624                                    | 12974      | 2104         | 16  | NR | NR | RT |          |       |          |        |             |               |           |             |      |               |             |          | 4    |             | 4     |          |
|                                                              |            |              |     | •  | •  |    | Basin    | 21 -  | Cont     | inue   | d           |               |           |             |      |               |             |          |      |             |       |          |
| Site Description                                             | Station ID | Waterbody ID | Reg | SE | CE | IM | 24 hr DO | АдНар | Benthics | Nekton | Metal Water | Organic Water | Metal Sed | Organic Sed | Conv | Amb Tox Water | Amb Tox Sed | Bacteria | Flow | Fish Tissue | Field | Comments |
| NUECES RIVER<br>BRIDGE ON FM 190<br>NORTH OF<br>ASHERTON     | 12976      | 2105         | 16  | NR | NR | BS | 4        |       |          |        |             |               |           |             |      |               |             |          | 4    |             | 4     |          |
|                                                              |            |              |     |    |    |    |          |       |          |        |             |               |           |             |      |               |             |          |      |             |       |          |
|                                                              |            |              |     |    |    |    |          |       |          |        |             |               |           |             |      |               |             |          |      |             |       |          |
| FRIO RIVER AT SH<br>72 IN THREE<br>RIVERS TX                 | 12977      | 2106         | 14  | NR | NR | RT |          |       |          |        |             |               |           |             | 4    |               |             | 4        | 4    |             | 4     |          |
| NUECES RIVER<br>BRIDGE ON US 281<br>SOUTH OF THREE<br>RIVERS | 12979      | 2106         | 14  | NR | NR | RT |          |       |          |        |             |               |           |             | 4    |               |             | 4        | 4    |             | 4     |          |
| ATASCOSA RIVER<br>AT FM 99 BRIDGE<br>WEST OF<br>WHITSETT     | 12980      | 2107         | 14  | NR | NR | RT |          |       |          |        | 2           |               |           |             | 4    |               |             | 4        | 4    |             | 4     |          |

|                                                                                                                     |            |              |     |    |    |    | Basin      | 21 -  | Cont     | inue   | d           |               |           |             |      |               |             |          |      |             |       |          |
|---------------------------------------------------------------------------------------------------------------------|------------|--------------|-----|----|----|----|------------|-------|----------|--------|-------------|---------------|-----------|-------------|------|---------------|-------------|----------|------|-------------|-------|----------|
| Site Description                                                                                                    | Station ID | Waterbody ID | Reg | SE | CE | MT | 24 hr DO   | АдНар | Benthics | Nekton | Metal Water | Organic Water | Metal Sed | Organic Sed | Conv | Amb Tox Water | Amb Tox Sed | Bacteria | Flow | Fish Tissue | Field | Comments |
|                                                                                                                     |            |              |     |    |    |    |            |       |          |        |             |               |           |             |      |               |             |          |      |             |       |          |
| ATASCOSA RIVER<br>AT FM 541 4.75 KM<br>UPSTREAM OF THE<br>CONFLUENCE<br>WITH LIVEOAK<br>CREEK IN<br>ATASCOSA COUNTY | 20764      | 2107         | 13  | NR | NR | RT | 4<br>[LM1] |       |          |        |             |               |           |             | 4    |               |             | 4        | 4    |             | 4     |          |
| SAN MIGUEL<br>CREEK AT SH 16<br>NORTH OF TILDEN                                                                     | 12983      | 2108         | 16  | NR | NR | RT |            |       |          |        | 2           |               |           |             | 4    |               |             | 4        | 4    |             | 4     |          |
| LEONA RIVER 370<br>M UPSTREAM OF<br>FM 140                                                                          | 18418      | 2109         | 13  | NR | NR | RT | 4          |       |          |        |             |               |           |             | 4    |               |             | 4        | 4    |             | 4     |          |

| LEONA RIVER AT<br>FM 1581<br>SOUTHWEST OF<br>PEARSALL                                                                          | 12985      | <mark>2109</mark> | <b>13</b> | NR | NR | RT | I        |       | -        | I      | I           | I             | I         | I           | 4    | I             | I           | 4        | <mark>4</mark> | I           | 4     | ı        |
|--------------------------------------------------------------------------------------------------------------------------------|------------|-------------------|-----------|----|----|----|----------|-------|----------|--------|-------------|---------------|-----------|-------------|------|---------------|-------------|----------|----------------|-------------|-------|----------|
| SABINAL RIVER<br>BRIDGE AT US 90<br>WEST OF SABINAL                                                                            | 12993      | 2110              | 13        | NR | NR | RT |          |       |          |        |             |               |           |             | 4    |               |             | 4        | 4              |             | 4     |          |
|                                                                                                                                |            |                   |           | •  |    |    | Basin    | 21 -  | Cont     | tinue  | d           |               |           |             |      |               |             |          |                |             |       |          |
| Site Description                                                                                                               | Station ID | Waterbody ID      | Reg       | SE | CE | MT | 24 hr DO | АдНар | Benthics | Nekton | Metal Water | Organic Water | Metal Sed | Organic Sed | Conv | Amb Tox Water | Amb Tox Sed | Bacteria | Flow           | Fish Tissue | Field | Comments |
| UPPER SABINAL RIVER IMMEDIATELY UPSTREAM OF FM 187 APPROXIMATELY 140 M NORTHEAST OF ENTRANCE OF LOST MAPLES STATE NATURAL AREA | 22306      | 2110              | 13        | NR | ВА | RT |          |       |          |        |             |               |           |             | 4    |               |             | 4        | 4              |             | 4     |          |
|                                                                                                                                |            |                   |           |    |    |    |          |       |          |        |             |               |           |             |      |               |             |          |                |             |       |          |
| SABINAL RIVER AT<br>FM 187 5.6 MI<br>SOUTH OF<br>VANDERPOOL                                                                    | 14939      | 2111              | 13        | NR | ВА | RT |          |       |          |        |             |               |           |             | 4    |               |             | 4        | 4              |             | 4     |          |

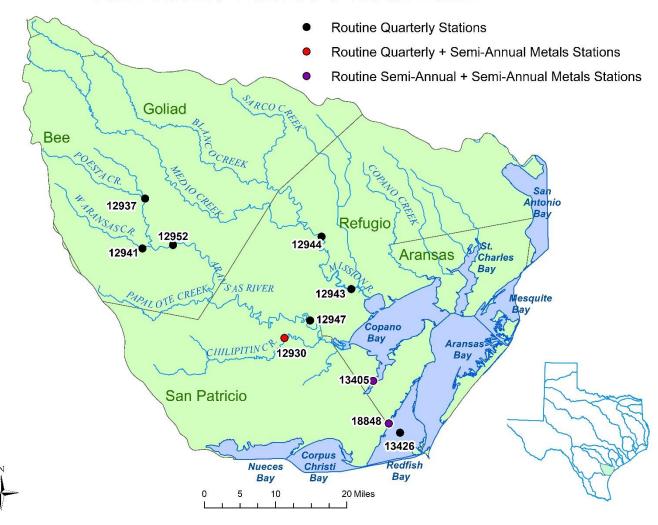
| SABINAL RIVER AT<br>RANCH ROAD 187<br>APPROX 10<br>KILOMETERS<br>SOUTH OF UTOPIA<br>AND 400 METERS<br>UPSTREAM OF THE<br>CONFLUENCE<br>WITH ONION<br>CREEK | 21948              | 2111              | 13              | NR | ВА | RT |          |       |          |        |             |               |           |             | 4              |               |             | 4              | 4              |             | 4              |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------|-----------------|----|----|----|----------|-------|----------|--------|-------------|---------------|-----------|-------------|----------------|---------------|-------------|----------------|----------------|-------------|----------------|----------|
|                                                                                                                                                            |                    |                   |                 |    |    |    | Basin    | 21 -  | Cont     | inue   | d           |               |           |             |                |               |             |                |                |             |                |          |
| Site Description                                                                                                                                           | Station ID         | Waterbody ID      | Reg             | SE | ЭЭ | TW | 24 hr DO | АдНар | Benthics | Nekton | Metal Water | Organic Water | Metal Sed | Organic Sed | Conv           | Amb Tox Water | Amb Tox Sed | Bacteria       | Flow           | Fish Tissue | Field          | Comments |
| NUECES RIVER AT<br>SH 55 SOUTH OF<br>BARKSDALE                                                                                                             | 13005              | <mark>2112</mark> | <b>13</b>       | NR | NR | RT | I        | 1     | I        | I      | I           | I             | -         | I           | <mark>4</mark> | I             | I           | <mark>4</mark> | <mark>4</mark> | I           | <mark>4</mark> |          |
| NUECES RIVER AT<br>CR 414 AT<br>MONTELL                                                                                                                    | <mark>22331</mark> | <mark>2112</mark> | <mark>13</mark> | NR | NR | RT |          |       | _        | _      |             |               | _         | _           | 4              |               | _           | 4              | 4              |             | 4              |          |
| NUECES RIVER<br>IMMEDIATELY<br>DOWNSTREAM OF<br>SH 55<br>SOUTHBOUND<br>BRIDGE<br>APPROXIMATELY<br>2.5 KM SOUTH OF<br>LAGUNA                                | 16704              | 2112              | 13              | NR | NR | RT |          |       |          |        |             |               |           |             | 4              |               |             | 4              | 4              |             | 4              |          |

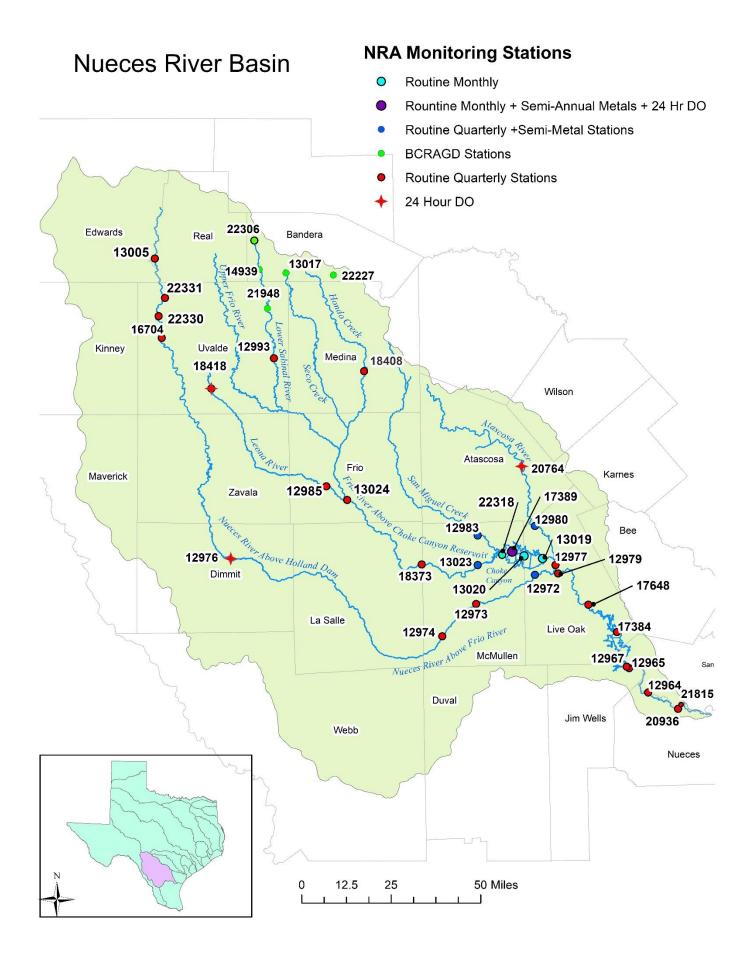
| NUECES RIVER AT<br>CHALK BLUFF<br>RESORT AND PARK                                                                                                    | <mark>22330</mark> | <mark>2112</mark> | <mark>13</mark> | NR | NR | RT | T        | I     | I        | I      | I           | I             | I         | I           | <mark>4</mark> |               |             | 4        | <mark>4</mark> |             | 4     |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------|-----------------|----|----|----|----------|-------|----------|--------|-------------|---------------|-----------|-------------|----------------|---------------|-------------|----------|----------------|-------------|-------|----------|
| HONDO CREEK<br>MID CHANNEL<br>IMMEDIATELY<br>DOWNSTREAM OF<br>SH 173 SOUTHEAST<br>OF HONDO                                                           | 18408              | 2114              | 13              | NR | NR | RT |          |       |          |        |             |               |           |             | 4              |               |             | 4        |                |             | 4     |          |
|                                                                                                                                                      |                    |                   |                 |    |    |    | Basin    | 21 -  | Cont     | inue   | d           |               |           |             |                |               |             |          |                |             |       |          |
| Site Description                                                                                                                                     | Station ID         | Waterbody ID      | Reg             | SE | CE | MT | 24 hr DO | АдНар | Benthics | Nekton | Metal Water | Organic Water | Metal Sed | Organic Sed | Conv           | Amb Tox Water | Amb Tox Sed | Bacteria | Flow           | Fish Tissue | Field | Comments |
| COMMISSIONERS CREEK 760 METERS DOWNSTREAM OF THE IMPOUNDMENT AT CAMP OF THE OZARKS APPROXIMATELY 355 METERS SOUTH OF FM 470 NEAR THE CITY OF TARPLEY | 22227              | 2114A             | 13              | NR | ВА | RT |          |       |          |        |             |               |           |             | 4              |               |             | 4        | 4              |             | 4     |          |
| SECO CREEK AT SH<br>470<br>APPROXIMATELY<br>10 MI WEST OF<br>TARPLEY                                                                                 | 13017              | 2115              | 13              | NR | ВА | RT |          |       |          |        |             |               |           |             | 4              |               |             | 4        | 4              |             | 4     |          |

| CHOKE CANYON<br>RESERVOIR NEAR<br>THE DAM 422 M<br>SOUTH AND 129 M<br>EAST OF SPILLWAY<br>CHANNEL USGS<br>SITE AC            | 13019      | 2116         | 14  | NR | NR | RT | 12       | I     | ı        | 1      | I           | I             |           | I           | 12   | I             | ı           | 12       | I    | ı           | 12    |          |
|------------------------------------------------------------------------------------------------------------------------------|------------|--------------|-----|----|----|----|----------|-------|----------|--------|-------------|---------------|-----------|-------------|------|---------------|-------------|----------|------|-------------|-------|----------|
|                                                                                                                              |            |              | •   |    |    |    | Basin    | 21 -  | Cont     | inue   | d           |               |           |             |      |               |             |          |      |             |       |          |
| Site Description                                                                                                             | Station ID | Waterbody ID | Reg | ЭS | ЭЭ | IM | 24 hr DO | АдНар | Benthics | Nekton | Metal Water | Organic Water | Metal Sed | Organic Sed | NUOO | Amb Tox Water | Amb Tox Sed | Bacteria | Flow | Fish Tissue | Field | Comments |
| CHOKE CANYON RESERVOIR MID LAKE 15 M E OF LIVE OAK/MCMULLEN COUNTY LINE NEAR OLD HWY 99 1.25 KM NORTH OF CC STATE PARK POINT | 13020      | 2116         | 14  | NR | NR | RT | 12       | 1     | I        | 1      | ı           | ı             |           | ı           | 12   | -             | [           | 12       | -    | [           | 12    | 1        |
| CHOKE CANYON RESERVOIR APPROX 0.45 KM SOUTHEAST OF FM 99 SOUTHERN MOST BRIDGE CROSSING THE FRIO RIVER ARM                    | 17389      | 2116         | 16  | NR | NR | RT | 12       | I     | I        | I      | 2           | I             | ı         | I           | 12   | -             | I           | 12       |      | I           | 12    |          |

| CHOKE CANYON RESERVOIR APPROXIMATELY 553 METERS BELOW THE CONFLUENCE WITH SAN MIGUEL CREEK | 22328      | <mark>2116</mark> | <mark>16</mark> | NR | NR | RT | 4        | I     | I        | I      |             | ı             | ı         | 1           | 12             | I             | ı           | 12             |      | ı           | 12    |          |
|--------------------------------------------------------------------------------------------|------------|-------------------|-----------------|----|----|----|----------|-------|----------|--------|-------------|---------------|-----------|-------------|----------------|---------------|-------------|----------------|------|-------------|-------|----------|
| FRIO RIVER AT SH<br>16 IN TILDEN                                                           | 13023      | 2117              | 16              | NR | NR | RT |          |       |          |        | 2           |               |           |             | 4              |               |             | 4              | 4    |             | 4     |          |
|                                                                                            |            |                   | ı               | 1  | ı  | 1  |          | Bas   | in 22    |        |             |               |           |             | ı              | ı             |             | ı              |      |             |       |          |
| Site Description                                                                           | Station ID | Waterbody ID      | Reg             | SE | CE | MT | 24 hr DO | АдНар | Benthics | Nekton | Metal Water | Organic Water | Metal Sed | Organic Sed | Conv           | Amb Tox Water | Amb Tox Sed | Bacteria       | Flow | Fish Tissue | Field | Comments |
| FRIO RIVER<br>IMMEDIATELY<br>UPSTREAM OF SH<br>97 NORTH OF<br>FOWLERTON                    | 18373      | 2117              | 16              | NR | NR | RT |          |       |          |        |             |               |           |             | 4              |               |             | 4              | 4    |             | 4     |          |
| FRIO RIVER AT IH<br>35 NORTHBOUND<br>BRIDGE NORTH OF<br>DILLEY                             | 13024      | <mark>2117</mark> | <mark>16</mark> | NR | NR | RT | _        | _     |          | _      |             | -             | _         | -           | <mark>4</mark> | I             | _           | <mark>4</mark> | 4    | -           | 4     |          |
| ARROYO<br>COLORADO AT US<br>77 IN SW<br>HARLINGEN                                          | 13079      | 2202              | 15              | NR | NR | RT |          |       |          |        |             |               |           |             | 4              |               |             | 4              | 4    |             | 4     |          |
| PETRONILA CREEK<br>AT FM 892 SE OF<br>DRISCOLL                                             | 13094      | 2204              | 14              | NR | NR | RT |          |       |          |        |             |               |           |             | 4              |               |             | 4              | 4    |             | 4     |          |

| PETRONILA CREEK<br>AT FM 665 EAST OF<br>DRISCOLL                                                                             | 13096      | 2204         | 14  | NR | NR | RT |          |       |          |        |             |               |           |             | 4    |               |             | 4        | 4    |             | 4     |          |
|------------------------------------------------------------------------------------------------------------------------------|------------|--------------|-----|----|----|----|----------|-------|----------|--------|-------------|---------------|-----------|-------------|------|---------------|-------------|----------|------|-------------|-------|----------|
| PETRONILA CREEK<br>181 METERS WEST<br>AND 6 METERS<br>SOUTH FROM THE<br>INTERSECTION OF<br>ALICE ROAD AND<br>LOST CREEK ROAD | 20806      | 2204         | 14  | NR | NR | RT |          |       |          |        |             |               |           |             | 4    |               |             | 4        |      |             | 4     |          |
|                                                                                                                              |            |              |     |    |    |    |          | Basi  | in 24    |        |             |               |           |             |      |               |             |          |      |             |       |          |
| Site Description                                                                                                             | Station ID | Waterbody ID | Reg | SE | CE | MT | 24 hr DO | АдНар | Benthics | Nekton | Metal Water | Organic Water | Metal Sed | Organic Sed | Conv | Amb Tox Water | Amb Tox Sed | Bacteria | Flow | Fish Tissue | Field | Comments |
| PORT BAY AT MIDDLE OF SH 188 WEST OF ROCKPORT                                                                                | 13405      | 2472         | 14  | NR | NR | RT |          |       |          |        | 2           |               |           |             | 2    |               |             | 2        |      |             | 2     |          |
| REDFISH BAY AT<br>SH 361 AT 3RD<br>BRIDGE BETWEEN<br>ARANSAS PASS AND<br>PORT ARANSAS                                        | 13426      | 2483         | 14  | NR | NR | RT |          |       |          |        |             |               |           |             | 4    |               |             | 4        |      |             | 4     |          |


| CONN BROWN HARBOR MID HARBOR 50 M NORTHEAST OF THE INTERSECTION OF HUFF ST AND EAST MADDOX AVE IN ARANSAS PASS | 18848      | 2483A        | 14  | NR | NR | RT |          |       |          |        | 2           |               |           |             | 2    |               |             | 2        |      |             | 2     |          |
|----------------------------------------------------------------------------------------------------------------|------------|--------------|-----|----|----|----|----------|-------|----------|--------|-------------|---------------|-----------|-------------|------|---------------|-------------|----------|------|-------------|-------|----------|
| OSO BAY IMMEDIATELY OFFSHHORE AT TIP OF PENINSULA AT PADRE ISLAND DRIVE/SOUTHBOU ND AT SH 358                  | 13440      | 2485         | 14  | NR | NR | RT |          |       |          |        |             |               |           |             | 4    |               |             | 4        |      |             | 4     |          |
|                                                                                                                |            |              |     |    |    |    | Basin    | 24 -  | Cont     | inue   | d           |               |           |             |      |               |             |          |      |             |       |          |
| Site Description                                                                                               | Station ID | Waterbody ID | Reg | SE | CE | MT | 24 hr DO | АдНар | Benthics | Nekton | Metal Water | Organic Water | Metal Sed | Organic Sed | Conv | Amb Tox Water | Amb Tox Sed | Bacteria | Flow | Fish Tissue | Field | Comments |
| OSO BAY 40 M UPSTREAM OF OCEAN DRIVE AND APPROXIMATELY 50 M WEST OF EASTERN LANDFALL OF BRIDGE                 | 13442      | 2485         | 14  | NR | NR | RT |          |       |          |        |             |               |           |             | 4    |               |             | 4        |      |             | 4     |          |


| OSO CREEK<br>IMMEDIATELY<br>DOWNSTREAM OF<br>SH 286 SOUTH OF<br>CORPUS CHRISTI                                                        | 13028      | 2485A        | 14  | NR | NR | RT |          |       |          |        |             |               |           |             | 4    |               |             | 4        |      |             | 4     |          |
|---------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|-----|----|----|----|----------|-------|----------|--------|-------------|---------------|-----------|-------------|------|---------------|-------------|----------|------|-------------|-------|----------|
| OSO CREEK<br>IMMEDIATELY<br>DOWNSTREAM OF<br>FM 763<br>SOUTHWEST OF<br>CORPUS CHRISTI                                                 | 13029      | 2485A        | 14  | NR | NR | RT |          |       |          |        |             |               |           |             | 4    |               |             | 4        |      |             | 4     |          |
| HIDALGO MAIN<br>FLOODWATER<br>CHANNEL AT FM<br>1420 1.65 KM<br>SOUTH OF<br>INTERSECTION<br>WITH FM 490 EAST<br>OF RAYMONDVILLE        | 22003      | 2491C        | 15  | NR | NR | RT |          |       |          |        |             |               |           |             | 4    |               |             | 4        | 4    |             | 4     |          |
|                                                                                                                                       |            |              |     |    |    |    | Basin    | 24 -  | Cont     | inue   | d           |               |           |             |      |               |             |          |      |             |       |          |
| Site Description                                                                                                                      | Station ID | Waterbody ID | Reg | SE | CE | MT | 24 hr DO | АдНар | Benthics | Nekton | Metal Water | Organic Water | Metal Sed | Organic Sed | Conv | Amb Tox Water | Amb Tox Sed | Bacteria | Flow | Fish Tissue | Field | Comments |
| RAYMONDVILLE<br>DRAIN AT WILLACY<br>COUNTY ROAD 445<br>800 METERS<br>NORTH OF<br>INTERSECTION<br>WITH FM 3142 EAST<br>OF RAYMONDVILLE | 22004      | 2491C        | 15  | NR | NR | RT |          |       |          |        |             |               |           |             | 4    |               |             | 4        | 4    |             | 4     |          |

| LOS OLMOS CREEK<br>IMMEDIATELY<br>UPSTREAM OF US<br>77 SOUTH OF<br>RIVIERA                                                 | 13034 | 2492  | 14 | NR | NR | RT |  |  |  |  | 4 |  | 4 |   | 4 |  |
|----------------------------------------------------------------------------------------------------------------------------|-------|-------|----|----|----|----|--|--|--|--|---|--|---|---|---|--|
| SAN FERNANDO<br>CREEK AT US 77 AT<br>KINGSVILLE                                                                            | 13033 | 2492A | 14 | NR | NR | RT |  |  |  |  | 4 |  | 4 | 4 | 4 |  |
| SAN MARTIN LAKE<br>MID ESTUARY 2.04<br>KM EAST AND 0.80<br>KM NORTH OF THE<br>HWY 48 BRIDGE<br>NORTHEAST OF<br>BROWNSVILLE | 22170 | 2494C | 15 | NR | NR | RT |  |  |  |  | 4 |  | 4 |   | 4 |  |

**Appendix C: Station Location Maps** 

## San Antonio-Nueces Coastal Basin



